CONVEYANCE ABNORMALITY DETECTING DEVICE AND CONVEYANCE ABNORMALITY DETECTING METHOD AS WELL AS METHOD FOR CONSTRUCTING MAXIMUM CURRENT PREDICTION MODEL FOR DETECTING CONVEYANCE ABNORMALITY

To enable a conveyance abnormality of a material of steel plates to be detected surely at low cost.SOLUTION: A conveyance abnormality detecting device detects a conveyance abnormality of a material of steel plates. The conveyance abnormality detecting device comprises: an obtaining part that obtains...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: IMAI MAKOTO, NISHIMURA SHOHEI
Format: Patent
Sprache:eng ; jpn
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator IMAI MAKOTO
NISHIMURA SHOHEI
description To enable a conveyance abnormality of a material of steel plates to be detected surely at low cost.SOLUTION: A conveyance abnormality detecting device detects a conveyance abnormality of a material of steel plates. The conveyance abnormality detecting device comprises: an obtaining part that obtains actual values of driving currents distributed respectively to a plurality of driving motors which drive a plurality of conveyance rollers that convey the material of steel plates; and a determining part that inputs a material specification parameter concerning the material of steel plates and operational parameters concerning a conveyance speed and acceleration of the material of steel plates as well as an injection quantity of cooling water, and outputs actual values of the driving currents distributed to the plurality of driving motors respectively, and determines whether or not a conveyance abnormality occurs in the material of steel plates, on the basis of a learnt maximum driving current prediction model to which machine learning is performed so that the maximum value of the driving currents is predicted in accordance with prescribed machine learning algorithm, the maximum value of the driving currents predicted by the learnt maximum driving current prediction model and the actual values of the driving currents obtained by the obtaining part.SELECTED DRAWING: Figure 3 【課題】 鋼板材料の搬送異常の検出を確実かつ低コストで実現する。【解決手段】 本発明は、鋼板材料の搬送異常を検出する搬送異常検出装置である。前記搬送異常検出装置は、前記鋼板材料を搬送する複数の搬送ローラを駆動する複数の駆動モータの各々に対する駆動電流の実績値を取得する取得部と、前記鋼板材料に関する材料諸元パラメータと前記鋼板材料の搬送速度及び加速度並びに冷却水の噴射量に関する操業パラメータとを入力とし、前記複数の駆動モータの各々に対する前記駆動電流の実績値を出力として、所定の機械学習アルゴリズムに従って前記駆動電流の最大値を予測するように機械学習が行われた学習済み最大駆動電流予測モデルと、前記学習済み最大駆動電流予測モデルにより予測される前記駆動電流の前記最大値と前記取得部により取得された前記駆動電流の前記実績値とに基づき、前記鋼板材料に搬送異常が発生したか否かを判定する判定部とを備える。【選択図】 図3
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_JP2023130912A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>JP2023130912A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_JP2023130912A3</originalsourceid><addsrcrecordid>eNqNjc0KwjAQhHvxIOo7LN6F_pw8xmRrI8mmpGm1p1IknkQL9fF8OFspeBH0NMvMN7Pz4MkNVVgz4ghsR8ZqpqSrQaBD7iTth6uSY0gCfrIaXWYEsAKOqNSok5MaO7YLZ8uJZCepSw28tBbJQW5RyCEyBNoIVO_GZ_j752Uwu7TX3q8mXQTrFB3PNr67N77v2rO_-UdzyOMwTqIk3EYxS_6CXlvbTYY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>CONVEYANCE ABNORMALITY DETECTING DEVICE AND CONVEYANCE ABNORMALITY DETECTING METHOD AS WELL AS METHOD FOR CONSTRUCTING MAXIMUM CURRENT PREDICTION MODEL FOR DETECTING CONVEYANCE ABNORMALITY</title><source>esp@cenet</source><creator>IMAI MAKOTO ; NISHIMURA SHOHEI</creator><creatorcontrib>IMAI MAKOTO ; NISHIMURA SHOHEI</creatorcontrib><description>To enable a conveyance abnormality of a material of steel plates to be detected surely at low cost.SOLUTION: A conveyance abnormality detecting device detects a conveyance abnormality of a material of steel plates. The conveyance abnormality detecting device comprises: an obtaining part that obtains actual values of driving currents distributed respectively to a plurality of driving motors which drive a plurality of conveyance rollers that convey the material of steel plates; and a determining part that inputs a material specification parameter concerning the material of steel plates and operational parameters concerning a conveyance speed and acceleration of the material of steel plates as well as an injection quantity of cooling water, and outputs actual values of the driving currents distributed to the plurality of driving motors respectively, and determines whether or not a conveyance abnormality occurs in the material of steel plates, on the basis of a learnt maximum driving current prediction model to which machine learning is performed so that the maximum value of the driving currents is predicted in accordance with prescribed machine learning algorithm, the maximum value of the driving currents predicted by the learnt maximum driving current prediction model and the actual values of the driving currents obtained by the obtaining part.SELECTED DRAWING: Figure 3 【課題】 鋼板材料の搬送異常の検出を確実かつ低コストで実現する。【解決手段】 本発明は、鋼板材料の搬送異常を検出する搬送異常検出装置である。前記搬送異常検出装置は、前記鋼板材料を搬送する複数の搬送ローラを駆動する複数の駆動モータの各々に対する駆動電流の実績値を取得する取得部と、前記鋼板材料に関する材料諸元パラメータと前記鋼板材料の搬送速度及び加速度並びに冷却水の噴射量に関する操業パラメータとを入力とし、前記複数の駆動モータの各々に対する前記駆動電流の実績値を出力として、所定の機械学習アルゴリズムに従って前記駆動電流の最大値を予測するように機械学習が行われた学習済み最大駆動電流予測モデルと、前記学習済み最大駆動電流予測モデルにより予測される前記駆動電流の前記最大値と前記取得部により取得された前記駆動電流の前記実績値とに基づき、前記鋼板材料に搬送異常が発生したか否かを判定する判定部とを備える。【選択図】 図3</description><language>eng ; jpn</language><subject>AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKINGWITHOUT ESSENTIALLY REMOVING MATERIAL ; CONVEYING ; HANDLING THIN OR FILAMENTARY MATERIAL ; MANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES,OTHERWISE THAN BY ROLLING ; MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVINGMATERIAL ; PACKING ; PERFORMING OPERATIONS ; PNEUMATIC TUBE CONVEYORS ; PUNCHING METAL ; ROLLING OF METAL ; SHOP CONVEYOR SYSTEMS ; STORING ; TRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING ORTIPPING ; TRANSPORTING</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230921&amp;DB=EPODOC&amp;CC=JP&amp;NR=2023130912A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25543,76293</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230921&amp;DB=EPODOC&amp;CC=JP&amp;NR=2023130912A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>IMAI MAKOTO</creatorcontrib><creatorcontrib>NISHIMURA SHOHEI</creatorcontrib><title>CONVEYANCE ABNORMALITY DETECTING DEVICE AND CONVEYANCE ABNORMALITY DETECTING METHOD AS WELL AS METHOD FOR CONSTRUCTING MAXIMUM CURRENT PREDICTION MODEL FOR DETECTING CONVEYANCE ABNORMALITY</title><description>To enable a conveyance abnormality of a material of steel plates to be detected surely at low cost.SOLUTION: A conveyance abnormality detecting device detects a conveyance abnormality of a material of steel plates. The conveyance abnormality detecting device comprises: an obtaining part that obtains actual values of driving currents distributed respectively to a plurality of driving motors which drive a plurality of conveyance rollers that convey the material of steel plates; and a determining part that inputs a material specification parameter concerning the material of steel plates and operational parameters concerning a conveyance speed and acceleration of the material of steel plates as well as an injection quantity of cooling water, and outputs actual values of the driving currents distributed to the plurality of driving motors respectively, and determines whether or not a conveyance abnormality occurs in the material of steel plates, on the basis of a learnt maximum driving current prediction model to which machine learning is performed so that the maximum value of the driving currents is predicted in accordance with prescribed machine learning algorithm, the maximum value of the driving currents predicted by the learnt maximum driving current prediction model and the actual values of the driving currents obtained by the obtaining part.SELECTED DRAWING: Figure 3 【課題】 鋼板材料の搬送異常の検出を確実かつ低コストで実現する。【解決手段】 本発明は、鋼板材料の搬送異常を検出する搬送異常検出装置である。前記搬送異常検出装置は、前記鋼板材料を搬送する複数の搬送ローラを駆動する複数の駆動モータの各々に対する駆動電流の実績値を取得する取得部と、前記鋼板材料に関する材料諸元パラメータと前記鋼板材料の搬送速度及び加速度並びに冷却水の噴射量に関する操業パラメータとを入力とし、前記複数の駆動モータの各々に対する前記駆動電流の実績値を出力として、所定の機械学習アルゴリズムに従って前記駆動電流の最大値を予測するように機械学習が行われた学習済み最大駆動電流予測モデルと、前記学習済み最大駆動電流予測モデルにより予測される前記駆動電流の前記最大値と前記取得部により取得された前記駆動電流の前記実績値とに基づき、前記鋼板材料に搬送異常が発生したか否かを判定する判定部とを備える。【選択図】 図3</description><subject>AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKINGWITHOUT ESSENTIALLY REMOVING MATERIAL</subject><subject>CONVEYING</subject><subject>HANDLING THIN OR FILAMENTARY MATERIAL</subject><subject>MANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES,OTHERWISE THAN BY ROLLING</subject><subject>MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVINGMATERIAL</subject><subject>PACKING</subject><subject>PERFORMING OPERATIONS</subject><subject>PNEUMATIC TUBE CONVEYORS</subject><subject>PUNCHING METAL</subject><subject>ROLLING OF METAL</subject><subject>SHOP CONVEYOR SYSTEMS</subject><subject>STORING</subject><subject>TRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING ORTIPPING</subject><subject>TRANSPORTING</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjc0KwjAQhHvxIOo7LN6F_pw8xmRrI8mmpGm1p1IknkQL9fF8OFspeBH0NMvMN7Pz4MkNVVgz4ghsR8ZqpqSrQaBD7iTth6uSY0gCfrIaXWYEsAKOqNSok5MaO7YLZ8uJZCepSw28tBbJQW5RyCEyBNoIVO_GZ_j752Uwu7TX3q8mXQTrFB3PNr67N77v2rO_-UdzyOMwTqIk3EYxS_6CXlvbTYY</recordid><startdate>20230921</startdate><enddate>20230921</enddate><creator>IMAI MAKOTO</creator><creator>NISHIMURA SHOHEI</creator><scope>EVB</scope></search><sort><creationdate>20230921</creationdate><title>CONVEYANCE ABNORMALITY DETECTING DEVICE AND CONVEYANCE ABNORMALITY DETECTING METHOD AS WELL AS METHOD FOR CONSTRUCTING MAXIMUM CURRENT PREDICTION MODEL FOR DETECTING CONVEYANCE ABNORMALITY</title><author>IMAI MAKOTO ; NISHIMURA SHOHEI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_JP2023130912A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng ; jpn</language><creationdate>2023</creationdate><topic>AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKINGWITHOUT ESSENTIALLY REMOVING MATERIAL</topic><topic>CONVEYING</topic><topic>HANDLING THIN OR FILAMENTARY MATERIAL</topic><topic>MANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES,OTHERWISE THAN BY ROLLING</topic><topic>MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVINGMATERIAL</topic><topic>PACKING</topic><topic>PERFORMING OPERATIONS</topic><topic>PNEUMATIC TUBE CONVEYORS</topic><topic>PUNCHING METAL</topic><topic>ROLLING OF METAL</topic><topic>SHOP CONVEYOR SYSTEMS</topic><topic>STORING</topic><topic>TRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING ORTIPPING</topic><topic>TRANSPORTING</topic><toplevel>online_resources</toplevel><creatorcontrib>IMAI MAKOTO</creatorcontrib><creatorcontrib>NISHIMURA SHOHEI</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>IMAI MAKOTO</au><au>NISHIMURA SHOHEI</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>CONVEYANCE ABNORMALITY DETECTING DEVICE AND CONVEYANCE ABNORMALITY DETECTING METHOD AS WELL AS METHOD FOR CONSTRUCTING MAXIMUM CURRENT PREDICTION MODEL FOR DETECTING CONVEYANCE ABNORMALITY</title><date>2023-09-21</date><risdate>2023</risdate><abstract>To enable a conveyance abnormality of a material of steel plates to be detected surely at low cost.SOLUTION: A conveyance abnormality detecting device detects a conveyance abnormality of a material of steel plates. The conveyance abnormality detecting device comprises: an obtaining part that obtains actual values of driving currents distributed respectively to a plurality of driving motors which drive a plurality of conveyance rollers that convey the material of steel plates; and a determining part that inputs a material specification parameter concerning the material of steel plates and operational parameters concerning a conveyance speed and acceleration of the material of steel plates as well as an injection quantity of cooling water, and outputs actual values of the driving currents distributed to the plurality of driving motors respectively, and determines whether or not a conveyance abnormality occurs in the material of steel plates, on the basis of a learnt maximum driving current prediction model to which machine learning is performed so that the maximum value of the driving currents is predicted in accordance with prescribed machine learning algorithm, the maximum value of the driving currents predicted by the learnt maximum driving current prediction model and the actual values of the driving currents obtained by the obtaining part.SELECTED DRAWING: Figure 3 【課題】 鋼板材料の搬送異常の検出を確実かつ低コストで実現する。【解決手段】 本発明は、鋼板材料の搬送異常を検出する搬送異常検出装置である。前記搬送異常検出装置は、前記鋼板材料を搬送する複数の搬送ローラを駆動する複数の駆動モータの各々に対する駆動電流の実績値を取得する取得部と、前記鋼板材料に関する材料諸元パラメータと前記鋼板材料の搬送速度及び加速度並びに冷却水の噴射量に関する操業パラメータとを入力とし、前記複数の駆動モータの各々に対する前記駆動電流の実績値を出力として、所定の機械学習アルゴリズムに従って前記駆動電流の最大値を予測するように機械学習が行われた学習済み最大駆動電流予測モデルと、前記学習済み最大駆動電流予測モデルにより予測される前記駆動電流の前記最大値と前記取得部により取得された前記駆動電流の前記実績値とに基づき、前記鋼板材料に搬送異常が発生したか否かを判定する判定部とを備える。【選択図】 図3</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng ; jpn
recordid cdi_epo_espacenet_JP2023130912A
source esp@cenet
subjects AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKINGWITHOUT ESSENTIALLY REMOVING MATERIAL
CONVEYING
HANDLING THIN OR FILAMENTARY MATERIAL
MANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES,OTHERWISE THAN BY ROLLING
MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVINGMATERIAL
PACKING
PERFORMING OPERATIONS
PNEUMATIC TUBE CONVEYORS
PUNCHING METAL
ROLLING OF METAL
SHOP CONVEYOR SYSTEMS
STORING
TRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING ORTIPPING
TRANSPORTING
title CONVEYANCE ABNORMALITY DETECTING DEVICE AND CONVEYANCE ABNORMALITY DETECTING METHOD AS WELL AS METHOD FOR CONSTRUCTING MAXIMUM CURRENT PREDICTION MODEL FOR DETECTING CONVEYANCE ABNORMALITY
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T12%3A36%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=IMAI%20MAKOTO&rft.date=2023-09-21&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EJP2023130912A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true