LEARNING PROGRAM, LEARNING METHOD, AND INFORMATION PROCESSING APPARATUS

To shorten a learning time of a natural language processing model.SOLUTION: An information processing apparatus deletes specific types of characters from each of a plurality of sentences and generates a plurality of word strings that do not include the specific types of characters and correspond to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: DANG DUY THANG
Format: Patent
Sprache:eng ; jpn
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator DANG DUY THANG
description To shorten a learning time of a natural language processing model.SOLUTION: An information processing apparatus deletes specific types of characters from each of a plurality of sentences and generates a plurality of word strings that do not include the specific types of characters and correspond to the plurality of word strings. The information processing apparatus divides the plurality of word strings into a plurality of groups, each including two or more word strings. The information processing apparatus performs, for each of the plurality of groups, padding to equalize the number of words of the two or more word strings on the basis of the maximum number of words in the two or more word strings. The information processing apparatus updates parameter values included in a natural language processing model for calculating an estimate value from a word string input using each of the plurality of padded groups.SELECTED DRAWING: Figure 6 【課題】自然言語処理モデルの学習時間を短縮する。【解決手段】情報処理装置は、複数の文それぞれから特定の種類の文字を削除して、特定の種類の文字を含まない単語列であって複数の文に対応する複数の単語列を生成する。情報処理装置は、複数の単語列を、2以上の単語列をそれぞれ含む複数のグループに分割する。情報処理装置は、複数のグループそれぞれに対して、2以上の単語列の中の最大単語数に基づいて2以上の単語列の単語数を均一化するパディングを行う。情報処理装置は、パディングが行われた複数のグループそれぞれを用いて、入力された単語列から推定値を算出する自然言語処理モデルに含まれるパラメータ値を更新する。【選択図】図6
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_JP2023117513A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>JP2023117513A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_JP2023117513A3</originalsourceid><addsrcrecordid>eNrjZHD3cXUM8vP0c1cICPJ3D3L01VGAi_i6hnj4u-goOPq5KHj6ufkH-TqGePr7gVQ6uwYHg5Q4BgQ4BjmGhAbzMLCmJeYUp_JCaW4GJTfXEGcP3dSC_PjU4oLE5NS81JJ4rwAjAyNjQ0NzU0NjR2OiFAEAM1MtDA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>LEARNING PROGRAM, LEARNING METHOD, AND INFORMATION PROCESSING APPARATUS</title><source>esp@cenet</source><creator>DANG DUY THANG</creator><creatorcontrib>DANG DUY THANG</creatorcontrib><description>To shorten a learning time of a natural language processing model.SOLUTION: An information processing apparatus deletes specific types of characters from each of a plurality of sentences and generates a plurality of word strings that do not include the specific types of characters and correspond to the plurality of word strings. The information processing apparatus divides the plurality of word strings into a plurality of groups, each including two or more word strings. The information processing apparatus performs, for each of the plurality of groups, padding to equalize the number of words of the two or more word strings on the basis of the maximum number of words in the two or more word strings. The information processing apparatus updates parameter values included in a natural language processing model for calculating an estimate value from a word string input using each of the plurality of padded groups.SELECTED DRAWING: Figure 6 【課題】自然言語処理モデルの学習時間を短縮する。【解決手段】情報処理装置は、複数の文それぞれから特定の種類の文字を削除して、特定の種類の文字を含まない単語列であって複数の文に対応する複数の単語列を生成する。情報処理装置は、複数の単語列を、2以上の単語列をそれぞれ含む複数のグループに分割する。情報処理装置は、複数のグループそれぞれに対して、2以上の単語列の中の最大単語数に基づいて2以上の単語列の単語数を均一化するパディングを行う。情報処理装置は、パディングが行われた複数のグループそれぞれを用いて、入力された単語列から推定値を算出する自然言語処理モデルに含まれるパラメータ値を更新する。【選択図】図6</description><language>eng ; jpn</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230824&amp;DB=EPODOC&amp;CC=JP&amp;NR=2023117513A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25563,76318</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230824&amp;DB=EPODOC&amp;CC=JP&amp;NR=2023117513A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>DANG DUY THANG</creatorcontrib><title>LEARNING PROGRAM, LEARNING METHOD, AND INFORMATION PROCESSING APPARATUS</title><description>To shorten a learning time of a natural language processing model.SOLUTION: An information processing apparatus deletes specific types of characters from each of a plurality of sentences and generates a plurality of word strings that do not include the specific types of characters and correspond to the plurality of word strings. The information processing apparatus divides the plurality of word strings into a plurality of groups, each including two or more word strings. The information processing apparatus performs, for each of the plurality of groups, padding to equalize the number of words of the two or more word strings on the basis of the maximum number of words in the two or more word strings. The information processing apparatus updates parameter values included in a natural language processing model for calculating an estimate value from a word string input using each of the plurality of padded groups.SELECTED DRAWING: Figure 6 【課題】自然言語処理モデルの学習時間を短縮する。【解決手段】情報処理装置は、複数の文それぞれから特定の種類の文字を削除して、特定の種類の文字を含まない単語列であって複数の文に対応する複数の単語列を生成する。情報処理装置は、複数の単語列を、2以上の単語列をそれぞれ含む複数のグループに分割する。情報処理装置は、複数のグループそれぞれに対して、2以上の単語列の中の最大単語数に基づいて2以上の単語列の単語数を均一化するパディングを行う。情報処理装置は、パディングが行われた複数のグループそれぞれを用いて、入力された単語列から推定値を算出する自然言語処理モデルに含まれるパラメータ値を更新する。【選択図】図6</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZHD3cXUM8vP0c1cICPJ3D3L01VGAi_i6hnj4u-goOPq5KHj6ufkH-TqGePr7gVQ6uwYHg5Q4BgQ4BjmGhAbzMLCmJeYUp_JCaW4GJTfXEGcP3dSC_PjU4oLE5NS81JJ4rwAjAyNjQ0NzU0NjR2OiFAEAM1MtDA</recordid><startdate>20230824</startdate><enddate>20230824</enddate><creator>DANG DUY THANG</creator><scope>EVB</scope></search><sort><creationdate>20230824</creationdate><title>LEARNING PROGRAM, LEARNING METHOD, AND INFORMATION PROCESSING APPARATUS</title><author>DANG DUY THANG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_JP2023117513A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng ; jpn</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>DANG DUY THANG</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>DANG DUY THANG</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>LEARNING PROGRAM, LEARNING METHOD, AND INFORMATION PROCESSING APPARATUS</title><date>2023-08-24</date><risdate>2023</risdate><abstract>To shorten a learning time of a natural language processing model.SOLUTION: An information processing apparatus deletes specific types of characters from each of a plurality of sentences and generates a plurality of word strings that do not include the specific types of characters and correspond to the plurality of word strings. The information processing apparatus divides the plurality of word strings into a plurality of groups, each including two or more word strings. The information processing apparatus performs, for each of the plurality of groups, padding to equalize the number of words of the two or more word strings on the basis of the maximum number of words in the two or more word strings. The information processing apparatus updates parameter values included in a natural language processing model for calculating an estimate value from a word string input using each of the plurality of padded groups.SELECTED DRAWING: Figure 6 【課題】自然言語処理モデルの学習時間を短縮する。【解決手段】情報処理装置は、複数の文それぞれから特定の種類の文字を削除して、特定の種類の文字を含まない単語列であって複数の文に対応する複数の単語列を生成する。情報処理装置は、複数の単語列を、2以上の単語列をそれぞれ含む複数のグループに分割する。情報処理装置は、複数のグループそれぞれに対して、2以上の単語列の中の最大単語数に基づいて2以上の単語列の単語数を均一化するパディングを行う。情報処理装置は、パディングが行われた複数のグループそれぞれを用いて、入力された単語列から推定値を算出する自然言語処理モデルに含まれるパラメータ値を更新する。【選択図】図6</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng ; jpn
recordid cdi_epo_espacenet_JP2023117513A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title LEARNING PROGRAM, LEARNING METHOD, AND INFORMATION PROCESSING APPARATUS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T09%3A24%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=DANG%20DUY%20THANG&rft.date=2023-08-24&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EJP2023117513A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true