MANUFACTURING METHOD OF SEMICONDUCTOR DEVICES AND SEMICONDUCTOR MANUFACTURING EQUIPMENT

To provide a manufacturing method of semiconductor devices capable of suppressing variations in thickness of oxide films among multiple SiC wafers.SOLUTION: The manufacturing method of semiconductor devices includes steps of: performing etching on multiple silicon carbide wafers so that the thicknes...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: YOSHIDA ATSUSHI, NAKANISHI YOSUKE, KATSUKI SHINICHIRO, AKIYOSHI KYOHEI
Format: Patent
Sprache:eng ; jpn
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator YOSHIDA ATSUSHI
NAKANISHI YOSUKE
KATSUKI SHINICHIRO
AKIYOSHI KYOHEI
description To provide a manufacturing method of semiconductor devices capable of suppressing variations in thickness of oxide films among multiple SiC wafers.SOLUTION: The manufacturing method of semiconductor devices includes steps of: performing etching on multiple silicon carbide wafers so that the thickness of a first inorganic film remains at least 750nm after forming the first inorganic film on the underside of the multiple silicon carbide wafers; and forming an oxide film on the upper surface of the multiple silicon carbide wafers by performing thermal oxidation treatment after the etching. The thermal oxidation treatment is performed in a state where at least one wafer including at least one of a dummy wafer or a monitor wafer and the multiple silicon carbide wafers are arranged along one direction with the upper surfaces of the multiple silicon carbide wafers are directed in the one direction. In the state of thermal oxidation treatment, a first silicon carbide wafer out of the multiple silicon carbide wafers is positioned directly under at least one of the wafers and a second silicon carbide wafer out of the multiple silicon carbide wafers is arranged directly under a third silicon carbide wafer out of the multiple silicon carbide wafers.SELECTED DRAWING: Figure 1 【課題】複数のSiCウエハ間での酸化膜の厚さのばらつきを抑えることのできる半導体装置の製造方法を提供する。【解決手段】複数の炭化珪素ウエハの下面に第1無機膜を形成した後に複数の炭化珪素ウエハのエッチングを第1無機膜の厚さが750nm以上残るように行い、エッチングの後に熱酸化処理を行って複数の炭化珪素ウエハの上面に酸化膜を形成し、熱酸化処理を、ダミーウエハまたはモニターウエハの少なくともいずれかを含む少なくとも1つのウエハおよび複数の炭化珪素ウエハが一方向に沿ってかつ複数の炭化珪素ウエハの上面を一方向に向けて並べられた状態で行い、熱酸化処理の状態において、複数の炭化珪素ウエハのうちの第1の炭化珪素ウエハは少なくとも1つのウエハのいずれかの直下に配置され、複数の炭化珪素ウエハのうちの第2の炭化珪素ウエハは複数の炭化珪素ウエハのうちの第3の炭化珪素ウエハの直下に配置されている。【選択図】図1
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_JP2023018322A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>JP2023018322A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_JP2023018322A3</originalsourceid><addsrcrecordid>eNrjZAj3dfQLdXN0DgkN8vRzV_B1DfHwd1Hwd1MIdvX1dPb3cwl1DvEPUnBxDfN0dg1WcPRzQZNB1e8aGOoZ4OvqF8LDwJqWmFOcyguluRmU3FxDnD10Uwvy41OLCxKTU_NSS-K9AowMjIwNDC2MjYwcjYlSBABmVjHq</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>MANUFACTURING METHOD OF SEMICONDUCTOR DEVICES AND SEMICONDUCTOR MANUFACTURING EQUIPMENT</title><source>esp@cenet</source><creator>YOSHIDA ATSUSHI ; NAKANISHI YOSUKE ; KATSUKI SHINICHIRO ; AKIYOSHI KYOHEI</creator><creatorcontrib>YOSHIDA ATSUSHI ; NAKANISHI YOSUKE ; KATSUKI SHINICHIRO ; AKIYOSHI KYOHEI</creatorcontrib><description>To provide a manufacturing method of semiconductor devices capable of suppressing variations in thickness of oxide films among multiple SiC wafers.SOLUTION: The manufacturing method of semiconductor devices includes steps of: performing etching on multiple silicon carbide wafers so that the thickness of a first inorganic film remains at least 750nm after forming the first inorganic film on the underside of the multiple silicon carbide wafers; and forming an oxide film on the upper surface of the multiple silicon carbide wafers by performing thermal oxidation treatment after the etching. The thermal oxidation treatment is performed in a state where at least one wafer including at least one of a dummy wafer or a monitor wafer and the multiple silicon carbide wafers are arranged along one direction with the upper surfaces of the multiple silicon carbide wafers are directed in the one direction. In the state of thermal oxidation treatment, a first silicon carbide wafer out of the multiple silicon carbide wafers is positioned directly under at least one of the wafers and a second silicon carbide wafer out of the multiple silicon carbide wafers is arranged directly under a third silicon carbide wafer out of the multiple silicon carbide wafers.SELECTED DRAWING: Figure 1 【課題】複数のSiCウエハ間での酸化膜の厚さのばらつきを抑えることのできる半導体装置の製造方法を提供する。【解決手段】複数の炭化珪素ウエハの下面に第1無機膜を形成した後に複数の炭化珪素ウエハのエッチングを第1無機膜の厚さが750nm以上残るように行い、エッチングの後に熱酸化処理を行って複数の炭化珪素ウエハの上面に酸化膜を形成し、熱酸化処理を、ダミーウエハまたはモニターウエハの少なくともいずれかを含む少なくとも1つのウエハおよび複数の炭化珪素ウエハが一方向に沿ってかつ複数の炭化珪素ウエハの上面を一方向に向けて並べられた状態で行い、熱酸化処理の状態において、複数の炭化珪素ウエハのうちの第1の炭化珪素ウエハは少なくとも1つのウエハのいずれかの直下に配置され、複数の炭化珪素ウエハのうちの第2の炭化珪素ウエハは複数の炭化珪素ウエハのうちの第3の炭化珪素ウエハの直下に配置されている。【選択図】図1</description><language>eng ; jpn</language><subject>BASIC ELECTRIC ELEMENTS ; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR ; ELECTRICITY ; SEMICONDUCTOR DEVICES</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230208&amp;DB=EPODOC&amp;CC=JP&amp;NR=2023018322A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76289</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230208&amp;DB=EPODOC&amp;CC=JP&amp;NR=2023018322A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>YOSHIDA ATSUSHI</creatorcontrib><creatorcontrib>NAKANISHI YOSUKE</creatorcontrib><creatorcontrib>KATSUKI SHINICHIRO</creatorcontrib><creatorcontrib>AKIYOSHI KYOHEI</creatorcontrib><title>MANUFACTURING METHOD OF SEMICONDUCTOR DEVICES AND SEMICONDUCTOR MANUFACTURING EQUIPMENT</title><description>To provide a manufacturing method of semiconductor devices capable of suppressing variations in thickness of oxide films among multiple SiC wafers.SOLUTION: The manufacturing method of semiconductor devices includes steps of: performing etching on multiple silicon carbide wafers so that the thickness of a first inorganic film remains at least 750nm after forming the first inorganic film on the underside of the multiple silicon carbide wafers; and forming an oxide film on the upper surface of the multiple silicon carbide wafers by performing thermal oxidation treatment after the etching. The thermal oxidation treatment is performed in a state where at least one wafer including at least one of a dummy wafer or a monitor wafer and the multiple silicon carbide wafers are arranged along one direction with the upper surfaces of the multiple silicon carbide wafers are directed in the one direction. In the state of thermal oxidation treatment, a first silicon carbide wafer out of the multiple silicon carbide wafers is positioned directly under at least one of the wafers and a second silicon carbide wafer out of the multiple silicon carbide wafers is arranged directly under a third silicon carbide wafer out of the multiple silicon carbide wafers.SELECTED DRAWING: Figure 1 【課題】複数のSiCウエハ間での酸化膜の厚さのばらつきを抑えることのできる半導体装置の製造方法を提供する。【解決手段】複数の炭化珪素ウエハの下面に第1無機膜を形成した後に複数の炭化珪素ウエハのエッチングを第1無機膜の厚さが750nm以上残るように行い、エッチングの後に熱酸化処理を行って複数の炭化珪素ウエハの上面に酸化膜を形成し、熱酸化処理を、ダミーウエハまたはモニターウエハの少なくともいずれかを含む少なくとも1つのウエハおよび複数の炭化珪素ウエハが一方向に沿ってかつ複数の炭化珪素ウエハの上面を一方向に向けて並べられた状態で行い、熱酸化処理の状態において、複数の炭化珪素ウエハのうちの第1の炭化珪素ウエハは少なくとも1つのウエハのいずれかの直下に配置され、複数の炭化珪素ウエハのうちの第2の炭化珪素ウエハは複数の炭化珪素ウエハのうちの第3の炭化珪素ウエハの直下に配置されている。【選択図】図1</description><subject>BASIC ELECTRIC ELEMENTS</subject><subject>ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR</subject><subject>ELECTRICITY</subject><subject>SEMICONDUCTOR DEVICES</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZAj3dfQLdXN0DgkN8vRzV_B1DfHwd1Hwd1MIdvX1dPb3cwl1DvEPUnBxDfN0dg1WcPRzQZNB1e8aGOoZ4OvqF8LDwJqWmFOcyguluRmU3FxDnD10Uwvy41OLCxKTU_NSS-K9AowMjIwNDC2MjYwcjYlSBABmVjHq</recordid><startdate>20230208</startdate><enddate>20230208</enddate><creator>YOSHIDA ATSUSHI</creator><creator>NAKANISHI YOSUKE</creator><creator>KATSUKI SHINICHIRO</creator><creator>AKIYOSHI KYOHEI</creator><scope>EVB</scope></search><sort><creationdate>20230208</creationdate><title>MANUFACTURING METHOD OF SEMICONDUCTOR DEVICES AND SEMICONDUCTOR MANUFACTURING EQUIPMENT</title><author>YOSHIDA ATSUSHI ; NAKANISHI YOSUKE ; KATSUKI SHINICHIRO ; AKIYOSHI KYOHEI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_JP2023018322A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng ; jpn</language><creationdate>2023</creationdate><topic>BASIC ELECTRIC ELEMENTS</topic><topic>ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR</topic><topic>ELECTRICITY</topic><topic>SEMICONDUCTOR DEVICES</topic><toplevel>online_resources</toplevel><creatorcontrib>YOSHIDA ATSUSHI</creatorcontrib><creatorcontrib>NAKANISHI YOSUKE</creatorcontrib><creatorcontrib>KATSUKI SHINICHIRO</creatorcontrib><creatorcontrib>AKIYOSHI KYOHEI</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>YOSHIDA ATSUSHI</au><au>NAKANISHI YOSUKE</au><au>KATSUKI SHINICHIRO</au><au>AKIYOSHI KYOHEI</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>MANUFACTURING METHOD OF SEMICONDUCTOR DEVICES AND SEMICONDUCTOR MANUFACTURING EQUIPMENT</title><date>2023-02-08</date><risdate>2023</risdate><abstract>To provide a manufacturing method of semiconductor devices capable of suppressing variations in thickness of oxide films among multiple SiC wafers.SOLUTION: The manufacturing method of semiconductor devices includes steps of: performing etching on multiple silicon carbide wafers so that the thickness of a first inorganic film remains at least 750nm after forming the first inorganic film on the underside of the multiple silicon carbide wafers; and forming an oxide film on the upper surface of the multiple silicon carbide wafers by performing thermal oxidation treatment after the etching. The thermal oxidation treatment is performed in a state where at least one wafer including at least one of a dummy wafer or a monitor wafer and the multiple silicon carbide wafers are arranged along one direction with the upper surfaces of the multiple silicon carbide wafers are directed in the one direction. In the state of thermal oxidation treatment, a first silicon carbide wafer out of the multiple silicon carbide wafers is positioned directly under at least one of the wafers and a second silicon carbide wafer out of the multiple silicon carbide wafers is arranged directly under a third silicon carbide wafer out of the multiple silicon carbide wafers.SELECTED DRAWING: Figure 1 【課題】複数のSiCウエハ間での酸化膜の厚さのばらつきを抑えることのできる半導体装置の製造方法を提供する。【解決手段】複数の炭化珪素ウエハの下面に第1無機膜を形成した後に複数の炭化珪素ウエハのエッチングを第1無機膜の厚さが750nm以上残るように行い、エッチングの後に熱酸化処理を行って複数の炭化珪素ウエハの上面に酸化膜を形成し、熱酸化処理を、ダミーウエハまたはモニターウエハの少なくともいずれかを含む少なくとも1つのウエハおよび複数の炭化珪素ウエハが一方向に沿ってかつ複数の炭化珪素ウエハの上面を一方向に向けて並べられた状態で行い、熱酸化処理の状態において、複数の炭化珪素ウエハのうちの第1の炭化珪素ウエハは少なくとも1つのウエハのいずれかの直下に配置され、複数の炭化珪素ウエハのうちの第2の炭化珪素ウエハは複数の炭化珪素ウエハのうちの第3の炭化珪素ウエハの直下に配置されている。【選択図】図1</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng ; jpn
recordid cdi_epo_espacenet_JP2023018322A
source esp@cenet
subjects BASIC ELECTRIC ELEMENTS
ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
ELECTRICITY
SEMICONDUCTOR DEVICES
title MANUFACTURING METHOD OF SEMICONDUCTOR DEVICES AND SEMICONDUCTOR MANUFACTURING EQUIPMENT
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T17%3A52%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=YOSHIDA%20ATSUSHI&rft.date=2023-02-08&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EJP2023018322A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true