NON-OPTICAL FLAME DETECTOR AND METHOD
To provide a flame detection method and system in a gas turbine.SOLUTION: There is provided a method of detecting a flame state of a combustor of a turbine engine. The method includes: determining at least one of a first derivative and a second derivative of a compressor discharge pressure (40) of a...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Patent |
Sprache: | eng ; jpn |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | ABHIJIT PRABHAKAR KULKARNI JOHN ROGERS HUEY TIMOTHY ANDREW HEALY SCOTT ARTHUR DAY |
description | To provide a flame detection method and system in a gas turbine.SOLUTION: There is provided a method of detecting a flame state of a combustor of a turbine engine. The method includes: determining at least one of a first derivative and a second derivative of a compressor discharge pressure (40) of a compressor of the turbine engine; determining at least one of a first derivative and a second derivative of a gas turbine exhaust gas temperature (30) of exhaust gases (70) output by the turbine engine; determining at least one of a first derivative and a second derivative of a gas turbine shaft/rotor speed of the turbine engine; determining at least one of a first derivative and a second derivative of a combustor dynamic pressure; and determining a flame state of the combustor of the turbine engine based on the combustor dynamic pressure, the determined derivatives of the combustion dynamics, compressor discharge pressure (40), gas turbine shaft/rotor speed, and gas turbine exhaust gas temperature (30) of the exhaust gases (70).SELECTED DRAWING: Figure 5
【課題】ガスタービンにおける火炎検出方法およびシステムを提供する。【解決手段】タービンエンジンの燃焼器の火炎状態を検出する方法。方法は、タービンエンジンの圧縮機の圧縮機吐出圧力(40)の一次導関数および二次導関数の少なくとも1つを決定するステップと、タービンエンジンによって出力された排気ガス(70)のガスタービン排気ガス温度(30)の一次導関数および二次導関数の少なくとも1つを決定するステップと、タービンエンジンのガスタービンシャフト/ロータ速度の一次導関数および二次導関数の少なくとも1つを決定するステップと、燃焼器動圧の一次導関数および二次導関数の少なくとも1つを決定するステップと、燃焼器動圧、燃焼ダイナミクスの決定された導関数、圧縮機吐出圧力(40)、ガスタービンシャフト/ロータ速度、および排気ガス(70)のガスタービン排気ガス温度(30)に基づいて、タービンエンジンの燃焼器の火炎状態を決定するステップとを含む。【選択図】図5 |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_JP2022151671A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>JP2022151671A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_JP2022151671A3</originalsourceid><addsrcrecordid>eNrjZFD18_fT9Q8I8XR29FFw83H0dVVwcQ1xdQ7xD1Jw9HNR8HUN8fB34WFgTUvMKU7lhdLcDEpuriHOHrqpBfnxqcUFicmpeakl8V4BRgZGRoamhmbmho7GRCkCAMo0I20</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>NON-OPTICAL FLAME DETECTOR AND METHOD</title><source>esp@cenet</source><creator>ABHIJIT PRABHAKAR KULKARNI ; JOHN ROGERS HUEY ; TIMOTHY ANDREW HEALY ; SCOTT ARTHUR DAY</creator><creatorcontrib>ABHIJIT PRABHAKAR KULKARNI ; JOHN ROGERS HUEY ; TIMOTHY ANDREW HEALY ; SCOTT ARTHUR DAY</creatorcontrib><description>To provide a flame detection method and system in a gas turbine.SOLUTION: There is provided a method of detecting a flame state of a combustor of a turbine engine. The method includes: determining at least one of a first derivative and a second derivative of a compressor discharge pressure (40) of a compressor of the turbine engine; determining at least one of a first derivative and a second derivative of a gas turbine exhaust gas temperature (30) of exhaust gases (70) output by the turbine engine; determining at least one of a first derivative and a second derivative of a gas turbine shaft/rotor speed of the turbine engine; determining at least one of a first derivative and a second derivative of a combustor dynamic pressure; and determining a flame state of the combustor of the turbine engine based on the combustor dynamic pressure, the determined derivatives of the combustion dynamics, compressor discharge pressure (40), gas turbine shaft/rotor speed, and gas turbine exhaust gas temperature (30) of the exhaust gases (70).SELECTED DRAWING: Figure 5
【課題】ガスタービンにおける火炎検出方法およびシステムを提供する。【解決手段】タービンエンジンの燃焼器の火炎状態を検出する方法。方法は、タービンエンジンの圧縮機の圧縮機吐出圧力(40)の一次導関数および二次導関数の少なくとも1つを決定するステップと、タービンエンジンによって出力された排気ガス(70)のガスタービン排気ガス温度(30)の一次導関数および二次導関数の少なくとも1つを決定するステップと、タービンエンジンのガスタービンシャフト/ロータ速度の一次導関数および二次導関数の少なくとも1つを決定するステップと、燃焼器動圧の一次導関数および二次導関数の少なくとも1つを決定するステップと、燃焼器動圧、燃焼ダイナミクスの決定された導関数、圧縮機吐出圧力(40)、ガスタービンシャフト/ロータ速度、および排気ガス(70)のガスタービン排気ガス温度(30)に基づいて、タービンエンジンの燃焼器の火炎状態を決定するステップとを含む。【選択図】図5</description><language>eng ; jpn</language><subject>AIR INTAKES FOR JET-PROPULSION PLANTS ; BLASTING ; COMBUSTION APPARATUS ; COMBUSTION ENGINES ; COMBUSTION PROCESSES ; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS ; ENGINE PLANTS IN GENERAL ; GAS-TURBINE PLANTS ; GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGHVELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS ; HEATING ; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS ; LIGHTING ; MACHINES OR ENGINES IN GENERAL ; MECHANICAL ENGINEERING ; NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAMTURBINES ; STEAM ENGINES ; WEAPONS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20221007&DB=EPODOC&CC=JP&NR=2022151671A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76289</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20221007&DB=EPODOC&CC=JP&NR=2022151671A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>ABHIJIT PRABHAKAR KULKARNI</creatorcontrib><creatorcontrib>JOHN ROGERS HUEY</creatorcontrib><creatorcontrib>TIMOTHY ANDREW HEALY</creatorcontrib><creatorcontrib>SCOTT ARTHUR DAY</creatorcontrib><title>NON-OPTICAL FLAME DETECTOR AND METHOD</title><description>To provide a flame detection method and system in a gas turbine.SOLUTION: There is provided a method of detecting a flame state of a combustor of a turbine engine. The method includes: determining at least one of a first derivative and a second derivative of a compressor discharge pressure (40) of a compressor of the turbine engine; determining at least one of a first derivative and a second derivative of a gas turbine exhaust gas temperature (30) of exhaust gases (70) output by the turbine engine; determining at least one of a first derivative and a second derivative of a gas turbine shaft/rotor speed of the turbine engine; determining at least one of a first derivative and a second derivative of a combustor dynamic pressure; and determining a flame state of the combustor of the turbine engine based on the combustor dynamic pressure, the determined derivatives of the combustion dynamics, compressor discharge pressure (40), gas turbine shaft/rotor speed, and gas turbine exhaust gas temperature (30) of the exhaust gases (70).SELECTED DRAWING: Figure 5
【課題】ガスタービンにおける火炎検出方法およびシステムを提供する。【解決手段】タービンエンジンの燃焼器の火炎状態を検出する方法。方法は、タービンエンジンの圧縮機の圧縮機吐出圧力(40)の一次導関数および二次導関数の少なくとも1つを決定するステップと、タービンエンジンによって出力された排気ガス(70)のガスタービン排気ガス温度(30)の一次導関数および二次導関数の少なくとも1つを決定するステップと、タービンエンジンのガスタービンシャフト/ロータ速度の一次導関数および二次導関数の少なくとも1つを決定するステップと、燃焼器動圧の一次導関数および二次導関数の少なくとも1つを決定するステップと、燃焼器動圧、燃焼ダイナミクスの決定された導関数、圧縮機吐出圧力(40)、ガスタービンシャフト/ロータ速度、および排気ガス(70)のガスタービン排気ガス温度(30)に基づいて、タービンエンジンの燃焼器の火炎状態を決定するステップとを含む。【選択図】図5</description><subject>AIR INTAKES FOR JET-PROPULSION PLANTS</subject><subject>BLASTING</subject><subject>COMBUSTION APPARATUS</subject><subject>COMBUSTION ENGINES</subject><subject>COMBUSTION PROCESSES</subject><subject>CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS</subject><subject>ENGINE PLANTS IN GENERAL</subject><subject>GAS-TURBINE PLANTS</subject><subject>GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGHVELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS</subject><subject>HEATING</subject><subject>HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS</subject><subject>LIGHTING</subject><subject>MACHINES OR ENGINES IN GENERAL</subject><subject>MECHANICAL ENGINEERING</subject><subject>NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAMTURBINES</subject><subject>STEAM ENGINES</subject><subject>WEAPONS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZFD18_fT9Q8I8XR29FFw83H0dVVwcQ1xdQ7xD1Jw9HNR8HUN8fB34WFgTUvMKU7lhdLcDEpuriHOHrqpBfnxqcUFicmpeakl8V4BRgZGRoamhmbmho7GRCkCAMo0I20</recordid><startdate>20221007</startdate><enddate>20221007</enddate><creator>ABHIJIT PRABHAKAR KULKARNI</creator><creator>JOHN ROGERS HUEY</creator><creator>TIMOTHY ANDREW HEALY</creator><creator>SCOTT ARTHUR DAY</creator><scope>EVB</scope></search><sort><creationdate>20221007</creationdate><title>NON-OPTICAL FLAME DETECTOR AND METHOD</title><author>ABHIJIT PRABHAKAR KULKARNI ; JOHN ROGERS HUEY ; TIMOTHY ANDREW HEALY ; SCOTT ARTHUR DAY</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_JP2022151671A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng ; jpn</language><creationdate>2022</creationdate><topic>AIR INTAKES FOR JET-PROPULSION PLANTS</topic><topic>BLASTING</topic><topic>COMBUSTION APPARATUS</topic><topic>COMBUSTION ENGINES</topic><topic>COMBUSTION PROCESSES</topic><topic>CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS</topic><topic>ENGINE PLANTS IN GENERAL</topic><topic>GAS-TURBINE PLANTS</topic><topic>GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGHVELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS</topic><topic>HEATING</topic><topic>HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS</topic><topic>LIGHTING</topic><topic>MACHINES OR ENGINES IN GENERAL</topic><topic>MECHANICAL ENGINEERING</topic><topic>NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAMTURBINES</topic><topic>STEAM ENGINES</topic><topic>WEAPONS</topic><toplevel>online_resources</toplevel><creatorcontrib>ABHIJIT PRABHAKAR KULKARNI</creatorcontrib><creatorcontrib>JOHN ROGERS HUEY</creatorcontrib><creatorcontrib>TIMOTHY ANDREW HEALY</creatorcontrib><creatorcontrib>SCOTT ARTHUR DAY</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>ABHIJIT PRABHAKAR KULKARNI</au><au>JOHN ROGERS HUEY</au><au>TIMOTHY ANDREW HEALY</au><au>SCOTT ARTHUR DAY</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>NON-OPTICAL FLAME DETECTOR AND METHOD</title><date>2022-10-07</date><risdate>2022</risdate><abstract>To provide a flame detection method and system in a gas turbine.SOLUTION: There is provided a method of detecting a flame state of a combustor of a turbine engine. The method includes: determining at least one of a first derivative and a second derivative of a compressor discharge pressure (40) of a compressor of the turbine engine; determining at least one of a first derivative and a second derivative of a gas turbine exhaust gas temperature (30) of exhaust gases (70) output by the turbine engine; determining at least one of a first derivative and a second derivative of a gas turbine shaft/rotor speed of the turbine engine; determining at least one of a first derivative and a second derivative of a combustor dynamic pressure; and determining a flame state of the combustor of the turbine engine based on the combustor dynamic pressure, the determined derivatives of the combustion dynamics, compressor discharge pressure (40), gas turbine shaft/rotor speed, and gas turbine exhaust gas temperature (30) of the exhaust gases (70).SELECTED DRAWING: Figure 5
【課題】ガスタービンにおける火炎検出方法およびシステムを提供する。【解決手段】タービンエンジンの燃焼器の火炎状態を検出する方法。方法は、タービンエンジンの圧縮機の圧縮機吐出圧力(40)の一次導関数および二次導関数の少なくとも1つを決定するステップと、タービンエンジンによって出力された排気ガス(70)のガスタービン排気ガス温度(30)の一次導関数および二次導関数の少なくとも1つを決定するステップと、タービンエンジンのガスタービンシャフト/ロータ速度の一次導関数および二次導関数の少なくとも1つを決定するステップと、燃焼器動圧の一次導関数および二次導関数の少なくとも1つを決定するステップと、燃焼器動圧、燃焼ダイナミクスの決定された導関数、圧縮機吐出圧力(40)、ガスタービンシャフト/ロータ速度、および排気ガス(70)のガスタービン排気ガス温度(30)に基づいて、タービンエンジンの燃焼器の火炎状態を決定するステップとを含む。【選択図】図5</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng ; jpn |
recordid | cdi_epo_espacenet_JP2022151671A |
source | esp@cenet |
subjects | AIR INTAKES FOR JET-PROPULSION PLANTS BLASTING COMBUSTION APPARATUS COMBUSTION ENGINES COMBUSTION PROCESSES CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS ENGINE PLANTS IN GENERAL GAS-TURBINE PLANTS GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGHVELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS HEATING HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS LIGHTING MACHINES OR ENGINES IN GENERAL MECHANICAL ENGINEERING NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAMTURBINES STEAM ENGINES WEAPONS |
title | NON-OPTICAL FLAME DETECTOR AND METHOD |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T06%3A22%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=ABHIJIT%20PRABHAKAR%20KULKARNI&rft.date=2022-10-07&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EJP2022151671A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |