VARIABLE SELECTION METHOD, VARIABLE SELECTION PROGRAM, AND VARIABLE SELECTION SYSTEM

To provide a variable selection method for machine learning with which it is possible to improve prediction accuracy, etc.SOLUTION: The present invention is a variable selection method for selecting a specific variable group used in machine learning from all variable groups constituting the mother d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: YUNOKI TAKAHIRO, YOGO YASUHIRO, MIYAZAKI IZURU
Format: Patent
Sprache:eng ; jpn
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator YUNOKI TAKAHIRO
YOGO YASUHIRO
MIYAZAKI IZURU
description To provide a variable selection method for machine learning with which it is possible to improve prediction accuracy, etc.SOLUTION: The present invention is a variable selection method for selecting a specific variable group used in machine learning from all variable groups constituting the mother data group concerned. The variable selection method comprises: an information amount calculation step for calculating, using the mother data group, respectively, the mutual information amount of a variable pair that is a combination of one or more first variables extracted from all variable groups and each second variable, unlike the first variables, extracted from all variable groups; and a verification step for performing, with regard to second variables extracted as many as prescribed selection counts in decreasing order of magnitude of mutual information amount or a selected variable group composed of said variable pair, learning model creation and performance evaluation using a selected data group pertaining to the selected variable group extracted from the mother data group. The specific variable group is selected on the basis of a relationship between the selected number of selected variable groups and the performance of the learning model.SELECTED DRAWING: Figure 5 【課題】予測精度等の向上を図れる機械学習用の変数選定方法を提供する。【解決手段】本発明は、対象となる母データ群を構成する全変数群から機械学習に用いる特定変数群を選定する変数選定方法である。変数選定方法は、全変数群から抽出される1以上の第1変数と第1変数と異なり全変数群から抽出される各第2変数との組合せである変数対の相互情報量をそれぞれ母データ群を用いて算出する情報量算出ステップと、相互情報量の大きい方から降順に所定の選択数だけ抽出した第2変数または該変数対からなる選択変数群について、母データ群から抽出される選択変数群に係る選択データ群を用いて学習モデルの作成と性能評価を行う検証ステップとを備える。特定変数群は、選択変数群の選択数と学習モデルの性能との関係に基づいて選定される。【選択図】図5
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_JP2021033895A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>JP2021033895A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_JP2021033895A3</originalsourceid><addsrcrecordid>eNrjZAgJcwzydHTycVUIdvVxdQ7x9PdT8HUN8fB30VHAIhUQ5O8e5Oiro-Do54JNPjgyOMTVl4eBNS0xpziVF0pzMyi5uYY4e-imFuTHpxYXJCan5qWWxHsFGBkYGRoYG1tYmjoaE6UIAH3uMH4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>VARIABLE SELECTION METHOD, VARIABLE SELECTION PROGRAM, AND VARIABLE SELECTION SYSTEM</title><source>esp@cenet</source><creator>YUNOKI TAKAHIRO ; YOGO YASUHIRO ; MIYAZAKI IZURU</creator><creatorcontrib>YUNOKI TAKAHIRO ; YOGO YASUHIRO ; MIYAZAKI IZURU</creatorcontrib><description>To provide a variable selection method for machine learning with which it is possible to improve prediction accuracy, etc.SOLUTION: The present invention is a variable selection method for selecting a specific variable group used in machine learning from all variable groups constituting the mother data group concerned. The variable selection method comprises: an information amount calculation step for calculating, using the mother data group, respectively, the mutual information amount of a variable pair that is a combination of one or more first variables extracted from all variable groups and each second variable, unlike the first variables, extracted from all variable groups; and a verification step for performing, with regard to second variables extracted as many as prescribed selection counts in decreasing order of magnitude of mutual information amount or a selected variable group composed of said variable pair, learning model creation and performance evaluation using a selected data group pertaining to the selected variable group extracted from the mother data group. The specific variable group is selected on the basis of a relationship between the selected number of selected variable groups and the performance of the learning model.SELECTED DRAWING: Figure 5 【課題】予測精度等の向上を図れる機械学習用の変数選定方法を提供する。【解決手段】本発明は、対象となる母データ群を構成する全変数群から機械学習に用いる特定変数群を選定する変数選定方法である。変数選定方法は、全変数群から抽出される1以上の第1変数と第1変数と異なり全変数群から抽出される各第2変数との組合せである変数対の相互情報量をそれぞれ母データ群を用いて算出する情報量算出ステップと、相互情報量の大きい方から降順に所定の選択数だけ抽出した第2変数または該変数対からなる選択変数群について、母データ群から抽出される選択変数群に係る選択データ群を用いて学習モデルの作成と性能評価を行う検証ステップとを備える。特定変数群は、選択変数群の選択数と学習モデルの性能との関係に基づいて選定される。【選択図】図5</description><language>eng ; jpn</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210301&amp;DB=EPODOC&amp;CC=JP&amp;NR=2021033895A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,777,882,25545,76296</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210301&amp;DB=EPODOC&amp;CC=JP&amp;NR=2021033895A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>YUNOKI TAKAHIRO</creatorcontrib><creatorcontrib>YOGO YASUHIRO</creatorcontrib><creatorcontrib>MIYAZAKI IZURU</creatorcontrib><title>VARIABLE SELECTION METHOD, VARIABLE SELECTION PROGRAM, AND VARIABLE SELECTION SYSTEM</title><description>To provide a variable selection method for machine learning with which it is possible to improve prediction accuracy, etc.SOLUTION: The present invention is a variable selection method for selecting a specific variable group used in machine learning from all variable groups constituting the mother data group concerned. The variable selection method comprises: an information amount calculation step for calculating, using the mother data group, respectively, the mutual information amount of a variable pair that is a combination of one or more first variables extracted from all variable groups and each second variable, unlike the first variables, extracted from all variable groups; and a verification step for performing, with regard to second variables extracted as many as prescribed selection counts in decreasing order of magnitude of mutual information amount or a selected variable group composed of said variable pair, learning model creation and performance evaluation using a selected data group pertaining to the selected variable group extracted from the mother data group. The specific variable group is selected on the basis of a relationship between the selected number of selected variable groups and the performance of the learning model.SELECTED DRAWING: Figure 5 【課題】予測精度等の向上を図れる機械学習用の変数選定方法を提供する。【解決手段】本発明は、対象となる母データ群を構成する全変数群から機械学習に用いる特定変数群を選定する変数選定方法である。変数選定方法は、全変数群から抽出される1以上の第1変数と第1変数と異なり全変数群から抽出される各第2変数との組合せである変数対の相互情報量をそれぞれ母データ群を用いて算出する情報量算出ステップと、相互情報量の大きい方から降順に所定の選択数だけ抽出した第2変数または該変数対からなる選択変数群について、母データ群から抽出される選択変数群に係る選択データ群を用いて学習モデルの作成と性能評価を行う検証ステップとを備える。特定変数群は、選択変数群の選択数と学習モデルの性能との関係に基づいて選定される。【選択図】図5</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZAgJcwzydHTycVUIdvVxdQ7x9PdT8HUN8fB30VHAIhUQ5O8e5Oiro-Do54JNPjgyOMTVl4eBNS0xpziVF0pzMyi5uYY4e-imFuTHpxYXJCan5qWWxHsFGBkYGRoYG1tYmjoaE6UIAH3uMH4</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>YUNOKI TAKAHIRO</creator><creator>YOGO YASUHIRO</creator><creator>MIYAZAKI IZURU</creator><scope>EVB</scope></search><sort><creationdate>20210301</creationdate><title>VARIABLE SELECTION METHOD, VARIABLE SELECTION PROGRAM, AND VARIABLE SELECTION SYSTEM</title><author>YUNOKI TAKAHIRO ; YOGO YASUHIRO ; MIYAZAKI IZURU</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_JP2021033895A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng ; jpn</language><creationdate>2021</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>YUNOKI TAKAHIRO</creatorcontrib><creatorcontrib>YOGO YASUHIRO</creatorcontrib><creatorcontrib>MIYAZAKI IZURU</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>YUNOKI TAKAHIRO</au><au>YOGO YASUHIRO</au><au>MIYAZAKI IZURU</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>VARIABLE SELECTION METHOD, VARIABLE SELECTION PROGRAM, AND VARIABLE SELECTION SYSTEM</title><date>2021-03-01</date><risdate>2021</risdate><abstract>To provide a variable selection method for machine learning with which it is possible to improve prediction accuracy, etc.SOLUTION: The present invention is a variable selection method for selecting a specific variable group used in machine learning from all variable groups constituting the mother data group concerned. The variable selection method comprises: an information amount calculation step for calculating, using the mother data group, respectively, the mutual information amount of a variable pair that is a combination of one or more first variables extracted from all variable groups and each second variable, unlike the first variables, extracted from all variable groups; and a verification step for performing, with regard to second variables extracted as many as prescribed selection counts in decreasing order of magnitude of mutual information amount or a selected variable group composed of said variable pair, learning model creation and performance evaluation using a selected data group pertaining to the selected variable group extracted from the mother data group. The specific variable group is selected on the basis of a relationship between the selected number of selected variable groups and the performance of the learning model.SELECTED DRAWING: Figure 5 【課題】予測精度等の向上を図れる機械学習用の変数選定方法を提供する。【解決手段】本発明は、対象となる母データ群を構成する全変数群から機械学習に用いる特定変数群を選定する変数選定方法である。変数選定方法は、全変数群から抽出される1以上の第1変数と第1変数と異なり全変数群から抽出される各第2変数との組合せである変数対の相互情報量をそれぞれ母データ群を用いて算出する情報量算出ステップと、相互情報量の大きい方から降順に所定の選択数だけ抽出した第2変数または該変数対からなる選択変数群について、母データ群から抽出される選択変数群に係る選択データ群を用いて学習モデルの作成と性能評価を行う検証ステップとを備える。特定変数群は、選択変数群の選択数と学習モデルの性能との関係に基づいて選定される。【選択図】図5</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng ; jpn
recordid cdi_epo_espacenet_JP2021033895A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
PHYSICS
title VARIABLE SELECTION METHOD, VARIABLE SELECTION PROGRAM, AND VARIABLE SELECTION SYSTEM
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T09%3A40%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=YUNOKI%20TAKAHIRO&rft.date=2021-03-01&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EJP2021033895A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true