THREE-DIMENSIONAL MOLDING DEVICE AND METHOD FOR MOLDING THREE-DIMENSIONAL MOLDED OBJECT
To suppress energy consumption for improving an interlayer adhesion of a molded object.SOLUTION: A three-dimensional molding device comprises: a discharge unit that discharges a molding material; a heating unit that heats the discharge unit; a temperature acquisition unit that acquires a temperature...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Patent |
Sprache: | eng ; jpn |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | FUJIMORI YASUSHI WATABE MANABU |
description | To suppress energy consumption for improving an interlayer adhesion of a molded object.SOLUTION: A three-dimensional molding device comprises: a discharge unit that discharges a molding material; a heating unit that heats the discharge unit; a temperature acquisition unit that acquires a temperature of the molding material placed on a stage; and a control unit. The control unit controls the heating unit so as to satisfy a relation of the following expression (1) with the following items: a temperature Tb and a path cross-sectional area Sb of an existing layer; a specific gravity ρb and a specific heat Cb of a first thermoplastic resin contained in the existing layer; a temperature Tu of the heating unit; a path cross-sectional area Su of a subsequent layer; a specific gravity ρu and a specific heat Cu of a second thermoplastic resin contained in the subsequent layer; a thermal decomposition temperature Td that is a lower thermal decomposition temperature between a thermal decomposition temperature of the first thermoplastic resin and a thermal decomposition temperature of the second thermoplastic resin; and a glass transition temperature Tg that is a higher glass transition point between a glass transition point of the first thermoplastic resin and a glass transition point of the second thermoplastic resin. Expression (1):Td>(Tu×Su×ρu×Cu+Tb×Sb×ρb×Cb)/(Su×ρu×Cu+Sb×ρb×Cb)>Tg.SELECTED DRAWING: Figure 1
【課題】造形物の層間密着性を高めるためのエネルギー消費を抑制する。【解決手段】三次元造形装置は、造形材料をステージに向かって吐出する吐出部と、吐出部を加熱する加熱部と、ステージ上に配置された造形材料の温度を取得する温度取得部と、制御部を備える。制御部は、既設層の温度Tbとパス断面積Sbと、既設層に含まれる第1熱可塑性樹脂の比重ρbと比熱Cbと、加熱部の温度Tuと、後続層のパス断面積Suと、後続層に含まれる第2熱可塑性樹脂の比重ρuと比熱Cuと、第1熱可塑性樹脂の熱分解温度と第2熱可塑性樹脂の熱分解温度とのうち低い方の温度Tdと、第1熱可塑性樹脂のガラス転移点と第2熱可塑性樹脂のガラス転移点とのうち高い方の温度Tgとの関係が式(1)を満たすように加熱部を制御する。Td>(Tu×Su×ρu×Cu+Tb×Sb×ρb×Cb)/(Su×ρu×Cu+Sb×ρb×Cb)>Tg ・・・(1)【選択図】図1 |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_JP2020131685A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>JP2020131685A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_JP2020131685A3</originalsourceid><addsrcrecordid>eNrjZAgP8QhyddV18fR19Qv29Pdz9FHw9fdx8fRzV3BxDfN0dlVw9HNR8HUN8fB3UXDzD4LLYtfn6qLg7-Tl6hzCw8CalphTnMoLpbkZlNxcQ5w9dFML8uNTiwsSk1PzUkvivQKMDIwMDI0NzSxMHY2JUgQABO4xJQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>THREE-DIMENSIONAL MOLDING DEVICE AND METHOD FOR MOLDING THREE-DIMENSIONAL MOLDED OBJECT</title><source>esp@cenet</source><creator>FUJIMORI YASUSHI ; WATABE MANABU</creator><creatorcontrib>FUJIMORI YASUSHI ; WATABE MANABU</creatorcontrib><description>To suppress energy consumption for improving an interlayer adhesion of a molded object.SOLUTION: A three-dimensional molding device comprises: a discharge unit that discharges a molding material; a heating unit that heats the discharge unit; a temperature acquisition unit that acquires a temperature of the molding material placed on a stage; and a control unit. The control unit controls the heating unit so as to satisfy a relation of the following expression (1) with the following items: a temperature Tb and a path cross-sectional area Sb of an existing layer; a specific gravity ρb and a specific heat Cb of a first thermoplastic resin contained in the existing layer; a temperature Tu of the heating unit; a path cross-sectional area Su of a subsequent layer; a specific gravity ρu and a specific heat Cu of a second thermoplastic resin contained in the subsequent layer; a thermal decomposition temperature Td that is a lower thermal decomposition temperature between a thermal decomposition temperature of the first thermoplastic resin and a thermal decomposition temperature of the second thermoplastic resin; and a glass transition temperature Tg that is a higher glass transition point between a glass transition point of the first thermoplastic resin and a glass transition point of the second thermoplastic resin. Expression (1):Td>(Tu×Su×ρu×Cu+Tb×Sb×ρb×Cb)/(Su×ρu×Cu+Sb×ρb×Cb)>Tg.SELECTED DRAWING: Figure 1
【課題】造形物の層間密着性を高めるためのエネルギー消費を抑制する。【解決手段】三次元造形装置は、造形材料をステージに向かって吐出する吐出部と、吐出部を加熱する加熱部と、ステージ上に配置された造形材料の温度を取得する温度取得部と、制御部を備える。制御部は、既設層の温度Tbとパス断面積Sbと、既設層に含まれる第1熱可塑性樹脂の比重ρbと比熱Cbと、加熱部の温度Tuと、後続層のパス断面積Suと、後続層に含まれる第2熱可塑性樹脂の比重ρuと比熱Cuと、第1熱可塑性樹脂の熱分解温度と第2熱可塑性樹脂の熱分解温度とのうち低い方の温度Tdと、第1熱可塑性樹脂のガラス転移点と第2熱可塑性樹脂のガラス転移点とのうち高い方の温度Tgとの関係が式(1)を満たすように加熱部を制御する。Td>(Tu×Su×ρu×Cu+Tb×Sb×ρb×Cb)/(Su×ρu×Cu+Sb×ρb×Cb)>Tg ・・・(1)【選択図】図1</description><language>eng ; jpn</language><subject>ADDITIVE MANUFACTURING TECHNOLOGY ; ADDITIVE MANUFACTURING, i.e. MANUFACTURING OFTHREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVEAGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING,STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING ; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING ; PERFORMING OPERATIONS ; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDEDFOR ; SHAPING OR JOINING OF PLASTICS ; TRANSPORTING ; WORKING OF PLASTICS ; WORKING OF SUBSTANCES IN A PLASTIC STATE, IN GENERAL</subject><creationdate>2020</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20200831&DB=EPODOC&CC=JP&NR=2020131685A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25563,76318</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20200831&DB=EPODOC&CC=JP&NR=2020131685A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>FUJIMORI YASUSHI</creatorcontrib><creatorcontrib>WATABE MANABU</creatorcontrib><title>THREE-DIMENSIONAL MOLDING DEVICE AND METHOD FOR MOLDING THREE-DIMENSIONAL MOLDED OBJECT</title><description>To suppress energy consumption for improving an interlayer adhesion of a molded object.SOLUTION: A three-dimensional molding device comprises: a discharge unit that discharges a molding material; a heating unit that heats the discharge unit; a temperature acquisition unit that acquires a temperature of the molding material placed on a stage; and a control unit. The control unit controls the heating unit so as to satisfy a relation of the following expression (1) with the following items: a temperature Tb and a path cross-sectional area Sb of an existing layer; a specific gravity ρb and a specific heat Cb of a first thermoplastic resin contained in the existing layer; a temperature Tu of the heating unit; a path cross-sectional area Su of a subsequent layer; a specific gravity ρu and a specific heat Cu of a second thermoplastic resin contained in the subsequent layer; a thermal decomposition temperature Td that is a lower thermal decomposition temperature between a thermal decomposition temperature of the first thermoplastic resin and a thermal decomposition temperature of the second thermoplastic resin; and a glass transition temperature Tg that is a higher glass transition point between a glass transition point of the first thermoplastic resin and a glass transition point of the second thermoplastic resin. Expression (1):Td>(Tu×Su×ρu×Cu+Tb×Sb×ρb×Cb)/(Su×ρu×Cu+Sb×ρb×Cb)>Tg.SELECTED DRAWING: Figure 1
【課題】造形物の層間密着性を高めるためのエネルギー消費を抑制する。【解決手段】三次元造形装置は、造形材料をステージに向かって吐出する吐出部と、吐出部を加熱する加熱部と、ステージ上に配置された造形材料の温度を取得する温度取得部と、制御部を備える。制御部は、既設層の温度Tbとパス断面積Sbと、既設層に含まれる第1熱可塑性樹脂の比重ρbと比熱Cbと、加熱部の温度Tuと、後続層のパス断面積Suと、後続層に含まれる第2熱可塑性樹脂の比重ρuと比熱Cuと、第1熱可塑性樹脂の熱分解温度と第2熱可塑性樹脂の熱分解温度とのうち低い方の温度Tdと、第1熱可塑性樹脂のガラス転移点と第2熱可塑性樹脂のガラス転移点とのうち高い方の温度Tgとの関係が式(1)を満たすように加熱部を制御する。Td>(Tu×Su×ρu×Cu+Tb×Sb×ρb×Cb)/(Su×ρu×Cu+Sb×ρb×Cb)>Tg ・・・(1)【選択図】図1</description><subject>ADDITIVE MANUFACTURING TECHNOLOGY</subject><subject>ADDITIVE MANUFACTURING, i.e. MANUFACTURING OFTHREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVEAGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING,STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING</subject><subject>AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING</subject><subject>PERFORMING OPERATIONS</subject><subject>SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDEDFOR</subject><subject>SHAPING OR JOINING OF PLASTICS</subject><subject>TRANSPORTING</subject><subject>WORKING OF PLASTICS</subject><subject>WORKING OF SUBSTANCES IN A PLASTIC STATE, IN GENERAL</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2020</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZAgP8QhyddV18fR19Qv29Pdz9FHw9fdx8fRzV3BxDfN0dlVw9HNR8HUN8fB3UXDzD4LLYtfn6qLg7-Tl6hzCw8CalphTnMoLpbkZlNxcQ5w9dFML8uNTiwsSk1PzUkvivQKMDIwMDI0NzSxMHY2JUgQABO4xJQ</recordid><startdate>20200831</startdate><enddate>20200831</enddate><creator>FUJIMORI YASUSHI</creator><creator>WATABE MANABU</creator><scope>EVB</scope></search><sort><creationdate>20200831</creationdate><title>THREE-DIMENSIONAL MOLDING DEVICE AND METHOD FOR MOLDING THREE-DIMENSIONAL MOLDED OBJECT</title><author>FUJIMORI YASUSHI ; WATABE MANABU</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_JP2020131685A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng ; jpn</language><creationdate>2020</creationdate><topic>ADDITIVE MANUFACTURING TECHNOLOGY</topic><topic>ADDITIVE MANUFACTURING, i.e. MANUFACTURING OFTHREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVEAGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING,STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING</topic><topic>AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING</topic><topic>PERFORMING OPERATIONS</topic><topic>SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDEDFOR</topic><topic>SHAPING OR JOINING OF PLASTICS</topic><topic>TRANSPORTING</topic><topic>WORKING OF PLASTICS</topic><topic>WORKING OF SUBSTANCES IN A PLASTIC STATE, IN GENERAL</topic><toplevel>online_resources</toplevel><creatorcontrib>FUJIMORI YASUSHI</creatorcontrib><creatorcontrib>WATABE MANABU</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>FUJIMORI YASUSHI</au><au>WATABE MANABU</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>THREE-DIMENSIONAL MOLDING DEVICE AND METHOD FOR MOLDING THREE-DIMENSIONAL MOLDED OBJECT</title><date>2020-08-31</date><risdate>2020</risdate><abstract>To suppress energy consumption for improving an interlayer adhesion of a molded object.SOLUTION: A three-dimensional molding device comprises: a discharge unit that discharges a molding material; a heating unit that heats the discharge unit; a temperature acquisition unit that acquires a temperature of the molding material placed on a stage; and a control unit. The control unit controls the heating unit so as to satisfy a relation of the following expression (1) with the following items: a temperature Tb and a path cross-sectional area Sb of an existing layer; a specific gravity ρb and a specific heat Cb of a first thermoplastic resin contained in the existing layer; a temperature Tu of the heating unit; a path cross-sectional area Su of a subsequent layer; a specific gravity ρu and a specific heat Cu of a second thermoplastic resin contained in the subsequent layer; a thermal decomposition temperature Td that is a lower thermal decomposition temperature between a thermal decomposition temperature of the first thermoplastic resin and a thermal decomposition temperature of the second thermoplastic resin; and a glass transition temperature Tg that is a higher glass transition point between a glass transition point of the first thermoplastic resin and a glass transition point of the second thermoplastic resin. Expression (1):Td>(Tu×Su×ρu×Cu+Tb×Sb×ρb×Cb)/(Su×ρu×Cu+Sb×ρb×Cb)>Tg.SELECTED DRAWING: Figure 1
【課題】造形物の層間密着性を高めるためのエネルギー消費を抑制する。【解決手段】三次元造形装置は、造形材料をステージに向かって吐出する吐出部と、吐出部を加熱する加熱部と、ステージ上に配置された造形材料の温度を取得する温度取得部と、制御部を備える。制御部は、既設層の温度Tbとパス断面積Sbと、既設層に含まれる第1熱可塑性樹脂の比重ρbと比熱Cbと、加熱部の温度Tuと、後続層のパス断面積Suと、後続層に含まれる第2熱可塑性樹脂の比重ρuと比熱Cuと、第1熱可塑性樹脂の熱分解温度と第2熱可塑性樹脂の熱分解温度とのうち低い方の温度Tdと、第1熱可塑性樹脂のガラス転移点と第2熱可塑性樹脂のガラス転移点とのうち高い方の温度Tgとの関係が式(1)を満たすように加熱部を制御する。Td>(Tu×Su×ρu×Cu+Tb×Sb×ρb×Cb)/(Su×ρu×Cu+Sb×ρb×Cb)>Tg ・・・(1)【選択図】図1</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng ; jpn |
recordid | cdi_epo_espacenet_JP2020131685A |
source | esp@cenet |
subjects | ADDITIVE MANUFACTURING TECHNOLOGY ADDITIVE MANUFACTURING, i.e. MANUFACTURING OFTHREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVEAGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING,STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING PERFORMING OPERATIONS SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDEDFOR SHAPING OR JOINING OF PLASTICS TRANSPORTING WORKING OF PLASTICS WORKING OF SUBSTANCES IN A PLASTIC STATE, IN GENERAL |
title | THREE-DIMENSIONAL MOLDING DEVICE AND METHOD FOR MOLDING THREE-DIMENSIONAL MOLDED OBJECT |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T21%3A26%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=FUJIMORI%20YASUSHI&rft.date=2020-08-31&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EJP2020131685A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |