DEVICE AND METHOD FOR DETECTING ABNORMALITY

To provide a device and a method for detecting an abnormality which can detect an abnormality by automatically learning and acquiring a feature amount even if the device has only a relatively low computing capability.SOLUTION: An abnormality detector 1 includes: a one-dimensional signal acquisition...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: MOGI TAKAHIRO
Format: Patent
Sprache:eng ; jpn
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator MOGI TAKAHIRO
description To provide a device and a method for detecting an abnormality which can detect an abnormality by automatically learning and acquiring a feature amount even if the device has only a relatively low computing capability.SOLUTION: An abnormality detector 1 includes: a one-dimensional signal acquisition unit 2 for acquiring a one-dimensional signal as a one-dimensional time-series signal from a monitoring target; a learning unit 5 for calculating a feature amount of the one-dimensional signal by making a one-dimensional CNN having a one-dimensional folding layer learned with the acquired one-dimensional signal as an input, and outputting setting information for constructing the one-dimensional CNN so as to classify the one-dimensional signal according to the feature amount and detect an abnormality in the monitoring target; a feature amount setting storage unit 61 and a classifier setting storage unit 62 for storing setting information; and a detection unit 6 for detecting an abnormality in the monitoring target by inputting an unknown one-dimensional signal into the one-dimensional CNN constructed on the basis of the setting information stored in the feature amount setting storage unit 61 and the classifier setting storage unit 62.SELECTED DRAWING: Figure 1 【課題】計算能力が比較的低い機器においても、特徴量を自動で学習および獲得して異常を検出することができる異常検出装置および方法を提供することを目的とする。【解決手段】異常検出装置1は、一次元の時系列信号である一次元信号を監視対象から取得する一次元信号取得部2と、取得された一次元信号を入力として、一次元畳み込み層を有する一次元CNNを学習させて一次元信号の特徴量を算出し、特徴量に基づいて一次元信号を分類して監視対象の異常を検出するように、一次元CNNを構築するための設定情報を出力する学習部5と、設定情報を記憶する特徴量設定記憶部61および分類器設定記憶部62と、特徴量設定記憶部61および分類器設定記憶部62に記憶された設定情報に基づいて構築された一次元CNNに、未知の一次元信号を入力して、監視対象の異常を検出する検出部6とを有する。【選択図】 図1
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_JP2019185580A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>JP2019185580A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_JP2019185580A3</originalsourceid><addsrcrecordid>eNrjZNB2cQ3zdHZVcPRzUfB1DfHwd1Fw8w9ScHENcXUO8fRzV3B08vMP8nX08QyJ5GFgTUvMKU7lhdLcDEpuriHOHrqpBfnxqcUFicmpeakl8V4BRgaGloYWpqYWBo7GRCkCAKMDJTg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>DEVICE AND METHOD FOR DETECTING ABNORMALITY</title><source>esp@cenet</source><creator>MOGI TAKAHIRO</creator><creatorcontrib>MOGI TAKAHIRO</creatorcontrib><description>To provide a device and a method for detecting an abnormality which can detect an abnormality by automatically learning and acquiring a feature amount even if the device has only a relatively low computing capability.SOLUTION: An abnormality detector 1 includes: a one-dimensional signal acquisition unit 2 for acquiring a one-dimensional signal as a one-dimensional time-series signal from a monitoring target; a learning unit 5 for calculating a feature amount of the one-dimensional signal by making a one-dimensional CNN having a one-dimensional folding layer learned with the acquired one-dimensional signal as an input, and outputting setting information for constructing the one-dimensional CNN so as to classify the one-dimensional signal according to the feature amount and detect an abnormality in the monitoring target; a feature amount setting storage unit 61 and a classifier setting storage unit 62 for storing setting information; and a detection unit 6 for detecting an abnormality in the monitoring target by inputting an unknown one-dimensional signal into the one-dimensional CNN constructed on the basis of the setting information stored in the feature amount setting storage unit 61 and the classifier setting storage unit 62.SELECTED DRAWING: Figure 1 【課題】計算能力が比較的低い機器においても、特徴量を自動で学習および獲得して異常を検出することができる異常検出装置および方法を提供することを目的とする。【解決手段】異常検出装置1は、一次元の時系列信号である一次元信号を監視対象から取得する一次元信号取得部2と、取得された一次元信号を入力として、一次元畳み込み層を有する一次元CNNを学習させて一次元信号の特徴量を算出し、特徴量に基づいて一次元信号を分類して監視対象の異常を検出するように、一次元CNNを構築するための設定情報を出力する学習部5と、設定情報を記憶する特徴量設定記憶部61および分類器設定記憶部62と、特徴量設定記憶部61および分類器設定記憶部62に記憶された設定情報に基づいて構築された一次元CNNに、未知の一次元信号を入力して、監視対象の異常を検出する検出部6とを有する。【選択図】 図1</description><language>eng ; jpn</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2019</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20191024&amp;DB=EPODOC&amp;CC=JP&amp;NR=2019185580A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20191024&amp;DB=EPODOC&amp;CC=JP&amp;NR=2019185580A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>MOGI TAKAHIRO</creatorcontrib><title>DEVICE AND METHOD FOR DETECTING ABNORMALITY</title><description>To provide a device and a method for detecting an abnormality which can detect an abnormality by automatically learning and acquiring a feature amount even if the device has only a relatively low computing capability.SOLUTION: An abnormality detector 1 includes: a one-dimensional signal acquisition unit 2 for acquiring a one-dimensional signal as a one-dimensional time-series signal from a monitoring target; a learning unit 5 for calculating a feature amount of the one-dimensional signal by making a one-dimensional CNN having a one-dimensional folding layer learned with the acquired one-dimensional signal as an input, and outputting setting information for constructing the one-dimensional CNN so as to classify the one-dimensional signal according to the feature amount and detect an abnormality in the monitoring target; a feature amount setting storage unit 61 and a classifier setting storage unit 62 for storing setting information; and a detection unit 6 for detecting an abnormality in the monitoring target by inputting an unknown one-dimensional signal into the one-dimensional CNN constructed on the basis of the setting information stored in the feature amount setting storage unit 61 and the classifier setting storage unit 62.SELECTED DRAWING: Figure 1 【課題】計算能力が比較的低い機器においても、特徴量を自動で学習および獲得して異常を検出することができる異常検出装置および方法を提供することを目的とする。【解決手段】異常検出装置1は、一次元の時系列信号である一次元信号を監視対象から取得する一次元信号取得部2と、取得された一次元信号を入力として、一次元畳み込み層を有する一次元CNNを学習させて一次元信号の特徴量を算出し、特徴量に基づいて一次元信号を分類して監視対象の異常を検出するように、一次元CNNを構築するための設定情報を出力する学習部5と、設定情報を記憶する特徴量設定記憶部61および分類器設定記憶部62と、特徴量設定記憶部61および分類器設定記憶部62に記憶された設定情報に基づいて構築された一次元CNNに、未知の一次元信号を入力して、監視対象の異常を検出する検出部6とを有する。【選択図】 図1</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2019</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZNB2cQ3zdHZVcPRzUfB1DfHwd1Fw8w9ScHENcXUO8fRzV3B08vMP8nX08QyJ5GFgTUvMKU7lhdLcDEpuriHOHrqpBfnxqcUFicmpeakl8V4BRgaGloYWpqYWBo7GRCkCAKMDJTg</recordid><startdate>20191024</startdate><enddate>20191024</enddate><creator>MOGI TAKAHIRO</creator><scope>EVB</scope></search><sort><creationdate>20191024</creationdate><title>DEVICE AND METHOD FOR DETECTING ABNORMALITY</title><author>MOGI TAKAHIRO</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_JP2019185580A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng ; jpn</language><creationdate>2019</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>MOGI TAKAHIRO</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>MOGI TAKAHIRO</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>DEVICE AND METHOD FOR DETECTING ABNORMALITY</title><date>2019-10-24</date><risdate>2019</risdate><abstract>To provide a device and a method for detecting an abnormality which can detect an abnormality by automatically learning and acquiring a feature amount even if the device has only a relatively low computing capability.SOLUTION: An abnormality detector 1 includes: a one-dimensional signal acquisition unit 2 for acquiring a one-dimensional signal as a one-dimensional time-series signal from a monitoring target; a learning unit 5 for calculating a feature amount of the one-dimensional signal by making a one-dimensional CNN having a one-dimensional folding layer learned with the acquired one-dimensional signal as an input, and outputting setting information for constructing the one-dimensional CNN so as to classify the one-dimensional signal according to the feature amount and detect an abnormality in the monitoring target; a feature amount setting storage unit 61 and a classifier setting storage unit 62 for storing setting information; and a detection unit 6 for detecting an abnormality in the monitoring target by inputting an unknown one-dimensional signal into the one-dimensional CNN constructed on the basis of the setting information stored in the feature amount setting storage unit 61 and the classifier setting storage unit 62.SELECTED DRAWING: Figure 1 【課題】計算能力が比較的低い機器においても、特徴量を自動で学習および獲得して異常を検出することができる異常検出装置および方法を提供することを目的とする。【解決手段】異常検出装置1は、一次元の時系列信号である一次元信号を監視対象から取得する一次元信号取得部2と、取得された一次元信号を入力として、一次元畳み込み層を有する一次元CNNを学習させて一次元信号の特徴量を算出し、特徴量に基づいて一次元信号を分類して監視対象の異常を検出するように、一次元CNNを構築するための設定情報を出力する学習部5と、設定情報を記憶する特徴量設定記憶部61および分類器設定記憶部62と、特徴量設定記憶部61および分類器設定記憶部62に記憶された設定情報に基づいて構築された一次元CNNに、未知の一次元信号を入力して、監視対象の異常を検出する検出部6とを有する。【選択図】 図1</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng ; jpn
recordid cdi_epo_espacenet_JP2019185580A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
PHYSICS
title DEVICE AND METHOD FOR DETECTING ABNORMALITY
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T21%3A21%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=MOGI%20TAKAHIRO&rft.date=2019-10-24&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EJP2019185580A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true