Adversarial semi-supervised one-shot learning

A method, a computer program product, and a system of adversarial semi-supervised one-shot training using a data stream. The method includes receiving a data stream based on an observation, wherein the data stream includes unlabeled data and labeled data. The method also includes training a predicti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Takayuki Osogami, Takayuki Katsuki
Format: Patent
Sprache:eng ; heb
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A method, a computer program product, and a system of adversarial semi-supervised one-shot training using a data stream. The method includes receiving a data stream based on an observation, wherein the data stream includes unlabeled data and labeled data. The method also includes training a prediction model with the labeled data using stochastic gradient descent based on a classification loss and an adversarial term and training a representation model with the labeled data and the unlabeled data based on a reconstruction loss and the adversarial term. The adversarial term is a cross-entropy between the middle layer output data from the models. The classification loss is a cross-entropy between the labeled data and an output from the prediction model. The method further includes updating a discriminator with middle layer output data from the prediction model and the representation model and based on a discrimination loss, and discarding the data stream.