Quantum error correction method and apparatus

Quantum error correction for a quantum computing system comprising a decoding system 102: receiving 214 an error syndrome representative of an error state of qubits 106; and sending 220 a signal to a control system 104 upon determining that a probability of successfully correcting the error state fa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Luka Skoric, Ben Andrew Barber, Kenton Micheal Barnes
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Luka Skoric
Ben Andrew Barber
Kenton Micheal Barnes
description Quantum error correction for a quantum computing system comprising a decoding system 102: receiving 214 an error syndrome representative of an error state of qubits 106; and sending 220 a signal to a control system 104 upon determining that a probability of successfully correcting the error state fails to satisfy a predetermined success criterion. The signal may indicate the probability of successfully correcting the error state. The control system determines 224 whether to modify a quantum computation being performed on the qubits, e.g. restarting or aborting. The determination is based on: an amount of remaining quantum computation; a count of how many signals have been received; determining a logical error probability value exceeding a predefined maximum. The decoding system also identifies a proposed correction operation based on the syndrome and sends it to the control system. Determining that the probability of successfully correcting the error state fails to satisfy the success criterion comprises identifying at the decoding system an ambiguous decoding scenario.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_GB2629436A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>GB2629436A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_GB2629436A3</originalsourceid><addsrcrecordid>eNrjZNANLE3MKynNVUgtKsovUkjOLypKTS7JzM9TyE0tychPUUjMA-KCgsSixJLSYh4G1rTEnOJUXijNzSDv5hri7KGbWpAfn1pckJicmpdaEu_uZGRmZGlibOZoTFgFAEy8KbI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Quantum error correction method and apparatus</title><source>esp@cenet</source><creator>Luka Skoric ; Ben Andrew Barber ; Kenton Micheal Barnes</creator><creatorcontrib>Luka Skoric ; Ben Andrew Barber ; Kenton Micheal Barnes</creatorcontrib><description>Quantum error correction for a quantum computing system comprising a decoding system 102: receiving 214 an error syndrome representative of an error state of qubits 106; and sending 220 a signal to a control system 104 upon determining that a probability of successfully correcting the error state fails to satisfy a predetermined success criterion. The signal may indicate the probability of successfully correcting the error state. The control system determines 224 whether to modify a quantum computation being performed on the qubits, e.g. restarting or aborting. The determination is based on: an amount of remaining quantum computation; a count of how many signals have been received; determining a logical error probability value exceeding a predefined maximum. The decoding system also identifies a proposed correction operation based on the syndrome and sends it to the control system. Determining that the probability of successfully correcting the error state fails to satisfy the success criterion comprises identifying at the decoding system an ambiguous decoding scenario.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20241030&amp;DB=EPODOC&amp;CC=GB&amp;NR=2629436A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76290</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20241030&amp;DB=EPODOC&amp;CC=GB&amp;NR=2629436A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Luka Skoric</creatorcontrib><creatorcontrib>Ben Andrew Barber</creatorcontrib><creatorcontrib>Kenton Micheal Barnes</creatorcontrib><title>Quantum error correction method and apparatus</title><description>Quantum error correction for a quantum computing system comprising a decoding system 102: receiving 214 an error syndrome representative of an error state of qubits 106; and sending 220 a signal to a control system 104 upon determining that a probability of successfully correcting the error state fails to satisfy a predetermined success criterion. The signal may indicate the probability of successfully correcting the error state. The control system determines 224 whether to modify a quantum computation being performed on the qubits, e.g. restarting or aborting. The determination is based on: an amount of remaining quantum computation; a count of how many signals have been received; determining a logical error probability value exceeding a predefined maximum. The decoding system also identifies a proposed correction operation based on the syndrome and sends it to the control system. Determining that the probability of successfully correcting the error state fails to satisfy the success criterion comprises identifying at the decoding system an ambiguous decoding scenario.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZNANLE3MKynNVUgtKsovUkjOLypKTS7JzM9TyE0tychPUUjMA-KCgsSixJLSYh4G1rTEnOJUXijNzSDv5hri7KGbWpAfn1pckJicmpdaEu_uZGRmZGlibOZoTFgFAEy8KbI</recordid><startdate>20241030</startdate><enddate>20241030</enddate><creator>Luka Skoric</creator><creator>Ben Andrew Barber</creator><creator>Kenton Micheal Barnes</creator><scope>EVB</scope></search><sort><creationdate>20241030</creationdate><title>Quantum error correction method and apparatus</title><author>Luka Skoric ; Ben Andrew Barber ; Kenton Micheal Barnes</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_GB2629436A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Luka Skoric</creatorcontrib><creatorcontrib>Ben Andrew Barber</creatorcontrib><creatorcontrib>Kenton Micheal Barnes</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Luka Skoric</au><au>Ben Andrew Barber</au><au>Kenton Micheal Barnes</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Quantum error correction method and apparatus</title><date>2024-10-30</date><risdate>2024</risdate><abstract>Quantum error correction for a quantum computing system comprising a decoding system 102: receiving 214 an error syndrome representative of an error state of qubits 106; and sending 220 a signal to a control system 104 upon determining that a probability of successfully correcting the error state fails to satisfy a predetermined success criterion. The signal may indicate the probability of successfully correcting the error state. The control system determines 224 whether to modify a quantum computation being performed on the qubits, e.g. restarting or aborting. The determination is based on: an amount of remaining quantum computation; a count of how many signals have been received; determining a logical error probability value exceeding a predefined maximum. The decoding system also identifies a proposed correction operation based on the syndrome and sends it to the control system. Determining that the probability of successfully correcting the error state fails to satisfy the success criterion comprises identifying at the decoding system an ambiguous decoding scenario.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_GB2629436A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
PHYSICS
title Quantum error correction method and apparatus
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T07%3A45%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Luka%20Skoric&rft.date=2024-10-30&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EGB2629436A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true