Method for training a machine learning model to perform object detection

Broadly speaking, embodiments of the present techniques provide a method for unsupervised training of a machine learning, ML, model to perform object detection using unlabelled images. The method comprises method comprises obtaining a first training dataset comprising a plurality of unlabelled image...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Adrian Bulat, Ioannis Maniadis Metaxas, Georgios Tzimiropoulos, Brais Martinez Alonso
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Adrian Bulat
Ioannis Maniadis Metaxas
Georgios Tzimiropoulos
Brais Martinez Alonso
description Broadly speaking, embodiments of the present techniques provide a method for unsupervised training of a machine learning, ML, model to perform object detection using unlabelled images. The method comprises method comprises obtaining a first training dataset comprising a plurality of unlabelled images, each unlabelled image containing at least one object and analysing the first training dataset by using an object detector module of the ML model to extract at least one bounding box for each unlabelled image and generate a pseudo-label for each extracted bounding box. A second training dataset is then formed using the unlabelled images of the first training dataset and their corresponding extracted bounding boxes and pseudo-labels and this is used to train the object detector module to output bounding boxes and pseudo-labels for input pseudo-labelled images.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_GB2624270A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>GB2624270A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_GB2624270A3</originalsourceid><addsrcrecordid>eNqFyjEKAjEQRuE0FqKewbmAIFG0VlG3sbNfxuTf3UiSCdm5Py5ib_XB481N84AO4qmTSlo55JB7YkrshpBBEVy_KYlHJBUqqNObSF5vOCUPnQiSl2bWcRyx-rkw69v1eWk2KNJiLOyQoe39bA92b4_b0-7_8QG45TM4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Method for training a machine learning model to perform object detection</title><source>esp@cenet</source><creator>Adrian Bulat ; Ioannis Maniadis Metaxas ; Georgios Tzimiropoulos ; Brais Martinez Alonso</creator><creatorcontrib>Adrian Bulat ; Ioannis Maniadis Metaxas ; Georgios Tzimiropoulos ; Brais Martinez Alonso</creatorcontrib><description>Broadly speaking, embodiments of the present techniques provide a method for unsupervised training of a machine learning, ML, model to perform object detection using unlabelled images. The method comprises method comprises obtaining a first training dataset comprising a plurality of unlabelled images, each unlabelled image containing at least one object and analysing the first training dataset by using an object detector module of the ML model to extract at least one bounding box for each unlabelled image and generate a pseudo-label for each extracted bounding box. A second training dataset is then formed using the unlabelled images of the first training dataset and their corresponding extracted bounding boxes and pseudo-labels and this is used to train the object detector module to output bounding boxes and pseudo-labels for input pseudo-labelled images.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240515&amp;DB=EPODOC&amp;CC=GB&amp;NR=2624270A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76419</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240515&amp;DB=EPODOC&amp;CC=GB&amp;NR=2624270A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Adrian Bulat</creatorcontrib><creatorcontrib>Ioannis Maniadis Metaxas</creatorcontrib><creatorcontrib>Georgios Tzimiropoulos</creatorcontrib><creatorcontrib>Brais Martinez Alonso</creatorcontrib><title>Method for training a machine learning model to perform object detection</title><description>Broadly speaking, embodiments of the present techniques provide a method for unsupervised training of a machine learning, ML, model to perform object detection using unlabelled images. The method comprises method comprises obtaining a first training dataset comprising a plurality of unlabelled images, each unlabelled image containing at least one object and analysing the first training dataset by using an object detector module of the ML model to extract at least one bounding box for each unlabelled image and generate a pseudo-label for each extracted bounding box. A second training dataset is then formed using the unlabelled images of the first training dataset and their corresponding extracted bounding boxes and pseudo-labels and this is used to train the object detector module to output bounding boxes and pseudo-labels for input pseudo-labelled images.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqFyjEKAjEQRuE0FqKewbmAIFG0VlG3sbNfxuTf3UiSCdm5Py5ib_XB481N84AO4qmTSlo55JB7YkrshpBBEVy_KYlHJBUqqNObSF5vOCUPnQiSl2bWcRyx-rkw69v1eWk2KNJiLOyQoe39bA92b4_b0-7_8QG45TM4</recordid><startdate>20240515</startdate><enddate>20240515</enddate><creator>Adrian Bulat</creator><creator>Ioannis Maniadis Metaxas</creator><creator>Georgios Tzimiropoulos</creator><creator>Brais Martinez Alonso</creator><scope>EVB</scope></search><sort><creationdate>20240515</creationdate><title>Method for training a machine learning model to perform object detection</title><author>Adrian Bulat ; Ioannis Maniadis Metaxas ; Georgios Tzimiropoulos ; Brais Martinez Alonso</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_GB2624270A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Adrian Bulat</creatorcontrib><creatorcontrib>Ioannis Maniadis Metaxas</creatorcontrib><creatorcontrib>Georgios Tzimiropoulos</creatorcontrib><creatorcontrib>Brais Martinez Alonso</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Adrian Bulat</au><au>Ioannis Maniadis Metaxas</au><au>Georgios Tzimiropoulos</au><au>Brais Martinez Alonso</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Method for training a machine learning model to perform object detection</title><date>2024-05-15</date><risdate>2024</risdate><abstract>Broadly speaking, embodiments of the present techniques provide a method for unsupervised training of a machine learning, ML, model to perform object detection using unlabelled images. The method comprises method comprises obtaining a first training dataset comprising a plurality of unlabelled images, each unlabelled image containing at least one object and analysing the first training dataset by using an object detector module of the ML model to extract at least one bounding box for each unlabelled image and generate a pseudo-label for each extracted bounding box. A second training dataset is then formed using the unlabelled images of the first training dataset and their corresponding extracted bounding boxes and pseudo-labels and this is used to train the object detector module to output bounding boxes and pseudo-labels for input pseudo-labelled images.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_GB2624270A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
PHYSICS
title Method for training a machine learning model to perform object detection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T21%3A07%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Adrian%20Bulat&rft.date=2024-05-15&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EGB2624270A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true