Communication network
Machine learning systems can benefit from transfer learning of knowledge in training new models. Cognitive Autonomous Network OAM systems may utilise machine learning (ML) elements such as neural networks. MLTL producers create/possess knowledge (e.g. statistics or pre-trained models) and they may p...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Stephen Mwanje Abdelrahman Abdelkader |
description | Machine learning systems can benefit from transfer learning of knowledge in training new models. Cognitive Autonomous Network OAM systems may utilise machine learning (ML) elements such as neural networks. MLTL producers create/possess knowledge (e.g. statistics or pre-trained models) and they may publish (0) the knowledge or information about it (e.g. task, domain, context descriptions) to repositories. MLTL consumers and/or recipients can discover (1) information about knowledge by requesting reports from producers and/or repositories. The MLTL consumers/recipients may also request all/part of the actual knowledge (2) in order to use it in transfer learning (TL). |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_GB2623983A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>GB2623983A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_GB2623983A3</originalsourceid><addsrcrecordid>eNrjZBB1zs_NLc3LTE4syczPU8hLLSnPL8rmYWBNS8wpTuWF0twM8m6uIc4euqkF-fGpxQWJyalAlfHuTkZmRsaWFsaOxoRVAAAZoSCq</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Communication network</title><source>esp@cenet</source><creator>Stephen Mwanje ; Abdelrahman Abdelkader</creator><creatorcontrib>Stephen Mwanje ; Abdelrahman Abdelkader</creatorcontrib><description>Machine learning systems can benefit from transfer learning of knowledge in training new models. Cognitive Autonomous Network OAM systems may utilise machine learning (ML) elements such as neural networks. MLTL producers create/possess knowledge (e.g. statistics or pre-trained models) and they may publish (0) the knowledge or information about it (e.g. task, domain, context descriptions) to repositories. MLTL consumers and/or recipients can discover (1) information about knowledge by requesting reports from producers and/or repositories. The MLTL consumers/recipients may also request all/part of the actual knowledge (2) in order to use it in transfer learning (TL).</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC COMMUNICATION TECHNIQUE ; ELECTRICITY ; PHYSICS ; TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240508&DB=EPODOC&CC=GB&NR=2623983A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,777,882,25545,76296</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240508&DB=EPODOC&CC=GB&NR=2623983A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Stephen Mwanje</creatorcontrib><creatorcontrib>Abdelrahman Abdelkader</creatorcontrib><title>Communication network</title><description>Machine learning systems can benefit from transfer learning of knowledge in training new models. Cognitive Autonomous Network OAM systems may utilise machine learning (ML) elements such as neural networks. MLTL producers create/possess knowledge (e.g. statistics or pre-trained models) and they may publish (0) the knowledge or information about it (e.g. task, domain, context descriptions) to repositories. MLTL consumers and/or recipients can discover (1) information about knowledge by requesting reports from producers and/or repositories. The MLTL consumers/recipients may also request all/part of the actual knowledge (2) in order to use it in transfer learning (TL).</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC COMMUNICATION TECHNIQUE</subject><subject>ELECTRICITY</subject><subject>PHYSICS</subject><subject>TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZBB1zs_NLc3LTE4syczPU8hLLSnPL8rmYWBNS8wpTuWF0twM8m6uIc4euqkF-fGpxQWJyalAlfHuTkZmRsaWFsaOxoRVAAAZoSCq</recordid><startdate>20240508</startdate><enddate>20240508</enddate><creator>Stephen Mwanje</creator><creator>Abdelrahman Abdelkader</creator><scope>EVB</scope></search><sort><creationdate>20240508</creationdate><title>Communication network</title><author>Stephen Mwanje ; Abdelrahman Abdelkader</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_GB2623983A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC COMMUNICATION TECHNIQUE</topic><topic>ELECTRICITY</topic><topic>PHYSICS</topic><topic>TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</topic><toplevel>online_resources</toplevel><creatorcontrib>Stephen Mwanje</creatorcontrib><creatorcontrib>Abdelrahman Abdelkader</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Stephen Mwanje</au><au>Abdelrahman Abdelkader</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Communication network</title><date>2024-05-08</date><risdate>2024</risdate><abstract>Machine learning systems can benefit from transfer learning of knowledge in training new models. Cognitive Autonomous Network OAM systems may utilise machine learning (ML) elements such as neural networks. MLTL producers create/possess knowledge (e.g. statistics or pre-trained models) and they may publish (0) the knowledge or information about it (e.g. task, domain, context descriptions) to repositories. MLTL consumers and/or recipients can discover (1) information about knowledge by requesting reports from producers and/or repositories. The MLTL consumers/recipients may also request all/part of the actual knowledge (2) in order to use it in transfer learning (TL).</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_GB2623983A |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING ELECTRIC COMMUNICATION TECHNIQUE ELECTRICITY PHYSICS TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION |
title | Communication network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T02%3A38%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Stephen%20Mwanje&rft.date=2024-05-08&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EGB2623983A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |