Communication network

Machine learning systems can benefit from transfer learning of knowledge in training new models. Cognitive Autonomous Network OAM systems may utilise machine learning (ML) elements such as neural networks. MLTL producers create/possess knowledge (e.g. statistics or pre-trained models) and they may p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Stephen Mwanje, Abdelrahman Abdelkader
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Stephen Mwanje
Abdelrahman Abdelkader
description Machine learning systems can benefit from transfer learning of knowledge in training new models. Cognitive Autonomous Network OAM systems may utilise machine learning (ML) elements such as neural networks. MLTL producers create/possess knowledge (e.g. statistics or pre-trained models) and they may publish (0) the knowledge or information about it (e.g. task, domain, context descriptions) to repositories. MLTL consumers and/or recipients can discover (1) information about knowledge by requesting reports from producers and/or repositories. The MLTL consumers/recipients may also request all/part of the actual knowledge (2) in order to use it in transfer learning (TL).
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_GB2623983A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>GB2623983A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_GB2623983A3</originalsourceid><addsrcrecordid>eNrjZBB1zs_NLc3LTE4syczPU8hLLSnPL8rmYWBNS8wpTuWF0twM8m6uIc4euqkF-fGpxQWJyalAlfHuTkZmRsaWFsaOxoRVAAAZoSCq</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Communication network</title><source>esp@cenet</source><creator>Stephen Mwanje ; Abdelrahman Abdelkader</creator><creatorcontrib>Stephen Mwanje ; Abdelrahman Abdelkader</creatorcontrib><description>Machine learning systems can benefit from transfer learning of knowledge in training new models. Cognitive Autonomous Network OAM systems may utilise machine learning (ML) elements such as neural networks. MLTL producers create/possess knowledge (e.g. statistics or pre-trained models) and they may publish (0) the knowledge or information about it (e.g. task, domain, context descriptions) to repositories. MLTL consumers and/or recipients can discover (1) information about knowledge by requesting reports from producers and/or repositories. The MLTL consumers/recipients may also request all/part of the actual knowledge (2) in order to use it in transfer learning (TL).</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC COMMUNICATION TECHNIQUE ; ELECTRICITY ; PHYSICS ; TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240508&amp;DB=EPODOC&amp;CC=GB&amp;NR=2623983A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,777,882,25545,76296</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240508&amp;DB=EPODOC&amp;CC=GB&amp;NR=2623983A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Stephen Mwanje</creatorcontrib><creatorcontrib>Abdelrahman Abdelkader</creatorcontrib><title>Communication network</title><description>Machine learning systems can benefit from transfer learning of knowledge in training new models. Cognitive Autonomous Network OAM systems may utilise machine learning (ML) elements such as neural networks. MLTL producers create/possess knowledge (e.g. statistics or pre-trained models) and they may publish (0) the knowledge or information about it (e.g. task, domain, context descriptions) to repositories. MLTL consumers and/or recipients can discover (1) information about knowledge by requesting reports from producers and/or repositories. The MLTL consumers/recipients may also request all/part of the actual knowledge (2) in order to use it in transfer learning (TL).</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC COMMUNICATION TECHNIQUE</subject><subject>ELECTRICITY</subject><subject>PHYSICS</subject><subject>TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZBB1zs_NLc3LTE4syczPU8hLLSnPL8rmYWBNS8wpTuWF0twM8m6uIc4euqkF-fGpxQWJyalAlfHuTkZmRsaWFsaOxoRVAAAZoSCq</recordid><startdate>20240508</startdate><enddate>20240508</enddate><creator>Stephen Mwanje</creator><creator>Abdelrahman Abdelkader</creator><scope>EVB</scope></search><sort><creationdate>20240508</creationdate><title>Communication network</title><author>Stephen Mwanje ; Abdelrahman Abdelkader</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_GB2623983A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC COMMUNICATION TECHNIQUE</topic><topic>ELECTRICITY</topic><topic>PHYSICS</topic><topic>TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</topic><toplevel>online_resources</toplevel><creatorcontrib>Stephen Mwanje</creatorcontrib><creatorcontrib>Abdelrahman Abdelkader</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Stephen Mwanje</au><au>Abdelrahman Abdelkader</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Communication network</title><date>2024-05-08</date><risdate>2024</risdate><abstract>Machine learning systems can benefit from transfer learning of knowledge in training new models. Cognitive Autonomous Network OAM systems may utilise machine learning (ML) elements such as neural networks. MLTL producers create/possess knowledge (e.g. statistics or pre-trained models) and they may publish (0) the knowledge or information about it (e.g. task, domain, context descriptions) to repositories. MLTL consumers and/or recipients can discover (1) information about knowledge by requesting reports from producers and/or repositories. The MLTL consumers/recipients may also request all/part of the actual knowledge (2) in order to use it in transfer learning (TL).</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_GB2623983A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC COMMUNICATION TECHNIQUE
ELECTRICITY
PHYSICS
TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION
title Communication network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T02%3A38%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Stephen%20Mwanje&rft.date=2024-05-08&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EGB2623983A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true