Air data estimation in aircraft

An aircraft has an air data estimator 106 having a machine learning model trained to, in use, predict air data parameter values 120 from input values. The estimator is operable in real time on the input values, which is data, or derived data, from sensors internal to the aircraft only. Also claimed...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Pierre Moinier, Miles Ross Munro, William Frank Ellison, Ben George Watkinson
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Pierre Moinier
Miles Ross Munro
William Frank Ellison
Ben George Watkinson
description An aircraft has an air data estimator 106 having a machine learning model trained to, in use, predict air data parameter values 120 from input values. The estimator is operable in real time on the input values, which is data, or derived data, from sensors internal to the aircraft only. Also claimed is a computer implemented air data estimator where the input values are from internal aircraft avionics, so that the aircraft does not need air data sensors mounted on an external surface of the aircraft. Also claimed is a computer-implemented method of training an air data estimator to predict values of air data parameters of an aircraft, the method involving using supervised training of a neural network using data pairs, each with ground truth values of the air data parameters selected from a flight envelope of the aircraft, and corresponding simulated values from avionics in the aircraft, the simulated values computed using stored empirical data about aircraft engines and wind tunnel testing, and rules of computational fluid dynamics.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_GB2621843A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>GB2621843A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_GB2621843A3</originalsourceid><addsrcrecordid>eNrjZJB3zCxSSEksSVRILS7JzE0syczPU8jMU0jMLEouSkwr4WFgTUvMKU7lhdLcDPJuriHOHrqpBfnxqcUFicmpeakl8e5ORmZGhhYmxo7GhFUAAHmrI7w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Air data estimation in aircraft</title><source>esp@cenet</source><creator>Pierre Moinier ; Miles Ross Munro ; William Frank Ellison ; Ben George Watkinson</creator><creatorcontrib>Pierre Moinier ; Miles Ross Munro ; William Frank Ellison ; Ben George Watkinson</creatorcontrib><description>An aircraft has an air data estimator 106 having a machine learning model trained to, in use, predict air data parameter values 120 from input values. The estimator is operable in real time on the input values, which is data, or derived data, from sensors internal to the aircraft only. Also claimed is a computer implemented air data estimator where the input values are from internal aircraft avionics, so that the aircraft does not need air data sensors mounted on an external surface of the aircraft. Also claimed is a computer-implemented method of training an air data estimator to predict values of air data parameters of an aircraft, the method involving using supervised training of a neural network using data pairs, each with ground truth values of the air data parameters selected from a flight envelope of the aircraft, and corresponding simulated values from avionics in the aircraft, the simulated values computed using stored empirical data about aircraft engines and wind tunnel testing, and rules of computational fluid dynamics.</description><language>eng</language><subject>AIRCRAFT ; ARRANGEMENTS OR MOUNTING OF POWER PLANTS OR PROPULSIONTRANSMISSIONS IN AIRCRAFT ; AVIATION ; COSMONAUTICS ; EQUIPMENT FOR FITTING IN OR TO AIRCRAFT ; FLYING SUITS ; GYROSCOPIC INSTRUMENTS ; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT ; MEASURING ; MEASURING DISTANCES, LEVELS OR BEARINGS ; MEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION,OR SHOCK ; NAVIGATION ; PARACHUTES ; PERFORMING OPERATIONS ; PHOTOGRAMMETRY OR VIDEOGRAMMETRY ; PHYSICS ; SURVEYING ; TESTING ; TRANSPORTING</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240228&amp;DB=EPODOC&amp;CC=GB&amp;NR=2621843A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76289</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240228&amp;DB=EPODOC&amp;CC=GB&amp;NR=2621843A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Pierre Moinier</creatorcontrib><creatorcontrib>Miles Ross Munro</creatorcontrib><creatorcontrib>William Frank Ellison</creatorcontrib><creatorcontrib>Ben George Watkinson</creatorcontrib><title>Air data estimation in aircraft</title><description>An aircraft has an air data estimator 106 having a machine learning model trained to, in use, predict air data parameter values 120 from input values. The estimator is operable in real time on the input values, which is data, or derived data, from sensors internal to the aircraft only. Also claimed is a computer implemented air data estimator where the input values are from internal aircraft avionics, so that the aircraft does not need air data sensors mounted on an external surface of the aircraft. Also claimed is a computer-implemented method of training an air data estimator to predict values of air data parameters of an aircraft, the method involving using supervised training of a neural network using data pairs, each with ground truth values of the air data parameters selected from a flight envelope of the aircraft, and corresponding simulated values from avionics in the aircraft, the simulated values computed using stored empirical data about aircraft engines and wind tunnel testing, and rules of computational fluid dynamics.</description><subject>AIRCRAFT</subject><subject>ARRANGEMENTS OR MOUNTING OF POWER PLANTS OR PROPULSIONTRANSMISSIONS IN AIRCRAFT</subject><subject>AVIATION</subject><subject>COSMONAUTICS</subject><subject>EQUIPMENT FOR FITTING IN OR TO AIRCRAFT</subject><subject>FLYING SUITS</subject><subject>GYROSCOPIC INSTRUMENTS</subject><subject>INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT</subject><subject>MEASURING</subject><subject>MEASURING DISTANCES, LEVELS OR BEARINGS</subject><subject>MEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION,OR SHOCK</subject><subject>NAVIGATION</subject><subject>PARACHUTES</subject><subject>PERFORMING OPERATIONS</subject><subject>PHOTOGRAMMETRY OR VIDEOGRAMMETRY</subject><subject>PHYSICS</subject><subject>SURVEYING</subject><subject>TESTING</subject><subject>TRANSPORTING</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZJB3zCxSSEksSVRILS7JzE0syczPU8jMU0jMLEouSkwr4WFgTUvMKU7lhdLcDPJuriHOHrqpBfnxqcUFicmpeakl8e5ORmZGhhYmxo7GhFUAAHmrI7w</recordid><startdate>20240228</startdate><enddate>20240228</enddate><creator>Pierre Moinier</creator><creator>Miles Ross Munro</creator><creator>William Frank Ellison</creator><creator>Ben George Watkinson</creator><scope>EVB</scope></search><sort><creationdate>20240228</creationdate><title>Air data estimation in aircraft</title><author>Pierre Moinier ; Miles Ross Munro ; William Frank Ellison ; Ben George Watkinson</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_GB2621843A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2024</creationdate><topic>AIRCRAFT</topic><topic>ARRANGEMENTS OR MOUNTING OF POWER PLANTS OR PROPULSIONTRANSMISSIONS IN AIRCRAFT</topic><topic>AVIATION</topic><topic>COSMONAUTICS</topic><topic>EQUIPMENT FOR FITTING IN OR TO AIRCRAFT</topic><topic>FLYING SUITS</topic><topic>GYROSCOPIC INSTRUMENTS</topic><topic>INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT</topic><topic>MEASURING</topic><topic>MEASURING DISTANCES, LEVELS OR BEARINGS</topic><topic>MEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION,OR SHOCK</topic><topic>NAVIGATION</topic><topic>PARACHUTES</topic><topic>PERFORMING OPERATIONS</topic><topic>PHOTOGRAMMETRY OR VIDEOGRAMMETRY</topic><topic>PHYSICS</topic><topic>SURVEYING</topic><topic>TESTING</topic><topic>TRANSPORTING</topic><toplevel>online_resources</toplevel><creatorcontrib>Pierre Moinier</creatorcontrib><creatorcontrib>Miles Ross Munro</creatorcontrib><creatorcontrib>William Frank Ellison</creatorcontrib><creatorcontrib>Ben George Watkinson</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Pierre Moinier</au><au>Miles Ross Munro</au><au>William Frank Ellison</au><au>Ben George Watkinson</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Air data estimation in aircraft</title><date>2024-02-28</date><risdate>2024</risdate><abstract>An aircraft has an air data estimator 106 having a machine learning model trained to, in use, predict air data parameter values 120 from input values. The estimator is operable in real time on the input values, which is data, or derived data, from sensors internal to the aircraft only. Also claimed is a computer implemented air data estimator where the input values are from internal aircraft avionics, so that the aircraft does not need air data sensors mounted on an external surface of the aircraft. Also claimed is a computer-implemented method of training an air data estimator to predict values of air data parameters of an aircraft, the method involving using supervised training of a neural network using data pairs, each with ground truth values of the air data parameters selected from a flight envelope of the aircraft, and corresponding simulated values from avionics in the aircraft, the simulated values computed using stored empirical data about aircraft engines and wind tunnel testing, and rules of computational fluid dynamics.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_GB2621843A
source esp@cenet
subjects AIRCRAFT
ARRANGEMENTS OR MOUNTING OF POWER PLANTS OR PROPULSIONTRANSMISSIONS IN AIRCRAFT
AVIATION
COSMONAUTICS
EQUIPMENT FOR FITTING IN OR TO AIRCRAFT
FLYING SUITS
GYROSCOPIC INSTRUMENTS
INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
MEASURING
MEASURING DISTANCES, LEVELS OR BEARINGS
MEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION,OR SHOCK
NAVIGATION
PARACHUTES
PERFORMING OPERATIONS
PHOTOGRAMMETRY OR VIDEOGRAMMETRY
PHYSICS
SURVEYING
TESTING
TRANSPORTING
title Air data estimation in aircraft
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T18%3A25%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Pierre%20Moinier&rft.date=2024-02-28&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EGB2621843A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true