Fair simultaneous comparison of parallel machine learning models

A method of using a computing device to compare performance of multiple algorithms includes receiving, by a computing device, multiple algorithms to assess. The computing device further receives a total amount of resources to allocate to the multiple algorithms. The computing device additionally ass...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Nitin Ramchandani, Robert Engel, Eric Kevin Butler, Aly Megahed, Yuya Jeremy Ong
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Nitin Ramchandani
Robert Engel
Eric Kevin Butler
Aly Megahed
Yuya Jeremy Ong
description A method of using a computing device to compare performance of multiple algorithms includes receiving, by a computing device, multiple algorithms to assess. The computing device further receives a total amount of resources to allocate to the multiple algorithms. The computing device additionally assigns a fair share of the total amount of resources to each of the multiple algorithms. The computing device still further executes each of the multiple algorithms using the assigned fair share of the total amount of resources. The computing device additionally compares the performance of each of the multiple based on at least one of multiple hardware relative utility metrics describing a hardware relative utility of any given resource allocation for each of the multiple algorithms.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_GB2620354A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>GB2620354A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_GB2620354A3</originalsourceid><addsrcrecordid>eNqFyj0OwjAMhuEsDAg4A74AEmqBmR9ROAB7ZYWvEMmxo7i9PwzsTO8zvPNw7DhV8pQnGVlhk1O0XLgmNyUb6EsWgVDm-E4KEnDVpC_K9oT4MswGFsfq10VYd9fH5b5BsR5eOEIx9rdzc2i27X53av8fHz8WMNA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Fair simultaneous comparison of parallel machine learning models</title><source>esp@cenet</source><creator>Nitin Ramchandani ; Robert Engel ; Eric Kevin Butler ; Aly Megahed ; Yuya Jeremy Ong</creator><creatorcontrib>Nitin Ramchandani ; Robert Engel ; Eric Kevin Butler ; Aly Megahed ; Yuya Jeremy Ong</creatorcontrib><description>A method of using a computing device to compare performance of multiple algorithms includes receiving, by a computing device, multiple algorithms to assess. The computing device further receives a total amount of resources to allocate to the multiple algorithms. The computing device additionally assigns a fair share of the total amount of resources to each of the multiple algorithms. The computing device still further executes each of the multiple algorithms using the assigned fair share of the total amount of resources. The computing device additionally compares the performance of each of the multiple based on at least one of multiple hardware relative utility metrics describing a hardware relative utility of any given resource allocation for each of the multiple algorithms.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240103&amp;DB=EPODOC&amp;CC=GB&amp;NR=2620354A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240103&amp;DB=EPODOC&amp;CC=GB&amp;NR=2620354A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Nitin Ramchandani</creatorcontrib><creatorcontrib>Robert Engel</creatorcontrib><creatorcontrib>Eric Kevin Butler</creatorcontrib><creatorcontrib>Aly Megahed</creatorcontrib><creatorcontrib>Yuya Jeremy Ong</creatorcontrib><title>Fair simultaneous comparison of parallel machine learning models</title><description>A method of using a computing device to compare performance of multiple algorithms includes receiving, by a computing device, multiple algorithms to assess. The computing device further receives a total amount of resources to allocate to the multiple algorithms. The computing device additionally assigns a fair share of the total amount of resources to each of the multiple algorithms. The computing device still further executes each of the multiple algorithms using the assigned fair share of the total amount of resources. The computing device additionally compares the performance of each of the multiple based on at least one of multiple hardware relative utility metrics describing a hardware relative utility of any given resource allocation for each of the multiple algorithms.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqFyj0OwjAMhuEsDAg4A74AEmqBmR9ROAB7ZYWvEMmxo7i9PwzsTO8zvPNw7DhV8pQnGVlhk1O0XLgmNyUb6EsWgVDm-E4KEnDVpC_K9oT4MswGFsfq10VYd9fH5b5BsR5eOEIx9rdzc2i27X53av8fHz8WMNA</recordid><startdate>20240103</startdate><enddate>20240103</enddate><creator>Nitin Ramchandani</creator><creator>Robert Engel</creator><creator>Eric Kevin Butler</creator><creator>Aly Megahed</creator><creator>Yuya Jeremy Ong</creator><scope>EVB</scope></search><sort><creationdate>20240103</creationdate><title>Fair simultaneous comparison of parallel machine learning models</title><author>Nitin Ramchandani ; Robert Engel ; Eric Kevin Butler ; Aly Megahed ; Yuya Jeremy Ong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_GB2620354A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Nitin Ramchandani</creatorcontrib><creatorcontrib>Robert Engel</creatorcontrib><creatorcontrib>Eric Kevin Butler</creatorcontrib><creatorcontrib>Aly Megahed</creatorcontrib><creatorcontrib>Yuya Jeremy Ong</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Nitin Ramchandani</au><au>Robert Engel</au><au>Eric Kevin Butler</au><au>Aly Megahed</au><au>Yuya Jeremy Ong</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Fair simultaneous comparison of parallel machine learning models</title><date>2024-01-03</date><risdate>2024</risdate><abstract>A method of using a computing device to compare performance of multiple algorithms includes receiving, by a computing device, multiple algorithms to assess. The computing device further receives a total amount of resources to allocate to the multiple algorithms. The computing device additionally assigns a fair share of the total amount of resources to each of the multiple algorithms. The computing device still further executes each of the multiple algorithms using the assigned fair share of the total amount of resources. The computing device additionally compares the performance of each of the multiple based on at least one of multiple hardware relative utility metrics describing a hardware relative utility of any given resource allocation for each of the multiple algorithms.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_GB2620354A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title Fair simultaneous comparison of parallel machine learning models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T01%3A17%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Nitin%20Ramchandani&rft.date=2024-01-03&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EGB2620354A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true