Fair simultaneous comparison of parallel machine learning models
A method of using a computing device to compare performance of multiple algorithms includes receiving, by a computing device, multiple algorithms to assess. The computing device further receives a total amount of resources to allocate to the multiple algorithms. The computing device additionally ass...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Nitin Ramchandani Robert Engel Eric Kevin Butler Aly Megahed Yuya Jeremy Ong |
description | A method of using a computing device to compare performance of multiple algorithms includes receiving, by a computing device, multiple algorithms to assess. The computing device further receives a total amount of resources to allocate to the multiple algorithms. The computing device additionally assigns a fair share of the total amount of resources to each of the multiple algorithms. The computing device still further executes each of the multiple algorithms using the assigned fair share of the total amount of resources. The computing device additionally compares the performance of each of the multiple based on at least one of multiple hardware relative utility metrics describing a hardware relative utility of any given resource allocation for each of the multiple algorithms. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_GB2620354A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>GB2620354A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_GB2620354A3</originalsourceid><addsrcrecordid>eNqFyj0OwjAMhuEsDAg4A74AEmqBmR9ROAB7ZYWvEMmxo7i9PwzsTO8zvPNw7DhV8pQnGVlhk1O0XLgmNyUb6EsWgVDm-E4KEnDVpC_K9oT4MswGFsfq10VYd9fH5b5BsR5eOEIx9rdzc2i27X53av8fHz8WMNA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Fair simultaneous comparison of parallel machine learning models</title><source>esp@cenet</source><creator>Nitin Ramchandani ; Robert Engel ; Eric Kevin Butler ; Aly Megahed ; Yuya Jeremy Ong</creator><creatorcontrib>Nitin Ramchandani ; Robert Engel ; Eric Kevin Butler ; Aly Megahed ; Yuya Jeremy Ong</creatorcontrib><description>A method of using a computing device to compare performance of multiple algorithms includes receiving, by a computing device, multiple algorithms to assess. The computing device further receives a total amount of resources to allocate to the multiple algorithms. The computing device additionally assigns a fair share of the total amount of resources to each of the multiple algorithms. The computing device still further executes each of the multiple algorithms using the assigned fair share of the total amount of resources. The computing device additionally compares the performance of each of the multiple based on at least one of multiple hardware relative utility metrics describing a hardware relative utility of any given resource allocation for each of the multiple algorithms.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240103&DB=EPODOC&CC=GB&NR=2620354A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240103&DB=EPODOC&CC=GB&NR=2620354A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Nitin Ramchandani</creatorcontrib><creatorcontrib>Robert Engel</creatorcontrib><creatorcontrib>Eric Kevin Butler</creatorcontrib><creatorcontrib>Aly Megahed</creatorcontrib><creatorcontrib>Yuya Jeremy Ong</creatorcontrib><title>Fair simultaneous comparison of parallel machine learning models</title><description>A method of using a computing device to compare performance of multiple algorithms includes receiving, by a computing device, multiple algorithms to assess. The computing device further receives a total amount of resources to allocate to the multiple algorithms. The computing device additionally assigns a fair share of the total amount of resources to each of the multiple algorithms. The computing device still further executes each of the multiple algorithms using the assigned fair share of the total amount of resources. The computing device additionally compares the performance of each of the multiple based on at least one of multiple hardware relative utility metrics describing a hardware relative utility of any given resource allocation for each of the multiple algorithms.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqFyj0OwjAMhuEsDAg4A74AEmqBmR9ROAB7ZYWvEMmxo7i9PwzsTO8zvPNw7DhV8pQnGVlhk1O0XLgmNyUb6EsWgVDm-E4KEnDVpC_K9oT4MswGFsfq10VYd9fH5b5BsR5eOEIx9rdzc2i27X53av8fHz8WMNA</recordid><startdate>20240103</startdate><enddate>20240103</enddate><creator>Nitin Ramchandani</creator><creator>Robert Engel</creator><creator>Eric Kevin Butler</creator><creator>Aly Megahed</creator><creator>Yuya Jeremy Ong</creator><scope>EVB</scope></search><sort><creationdate>20240103</creationdate><title>Fair simultaneous comparison of parallel machine learning models</title><author>Nitin Ramchandani ; Robert Engel ; Eric Kevin Butler ; Aly Megahed ; Yuya Jeremy Ong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_GB2620354A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Nitin Ramchandani</creatorcontrib><creatorcontrib>Robert Engel</creatorcontrib><creatorcontrib>Eric Kevin Butler</creatorcontrib><creatorcontrib>Aly Megahed</creatorcontrib><creatorcontrib>Yuya Jeremy Ong</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Nitin Ramchandani</au><au>Robert Engel</au><au>Eric Kevin Butler</au><au>Aly Megahed</au><au>Yuya Jeremy Ong</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Fair simultaneous comparison of parallel machine learning models</title><date>2024-01-03</date><risdate>2024</risdate><abstract>A method of using a computing device to compare performance of multiple algorithms includes receiving, by a computing device, multiple algorithms to assess. The computing device further receives a total amount of resources to allocate to the multiple algorithms. The computing device additionally assigns a fair share of the total amount of resources to each of the multiple algorithms. The computing device still further executes each of the multiple algorithms using the assigned fair share of the total amount of resources. The computing device additionally compares the performance of each of the multiple based on at least one of multiple hardware relative utility metrics describing a hardware relative utility of any given resource allocation for each of the multiple algorithms.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_GB2620354A |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING ELECTRIC DIGITAL DATA PROCESSING PHYSICS |
title | Fair simultaneous comparison of parallel machine learning models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T01%3A17%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Nitin%20Ramchandani&rft.date=2024-01-03&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EGB2620354A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |