Method for recognizing type of vortex signal of evaporator of nuclear power plant on basis of LSTM-CNN

A method for recognizing the type of a vortex signal of an evaporator of a nuclear power plant on the basis of an LSTM-CNN. The method comprises: calibrating data of each channel of a vortex signal; processing the calibrated data by using a time window; processing time sequence data in a differentia...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Ge Lin, Jun Zhang, Boyuan Ding, Bo Tang, Yuying Kong, Yang Zhang, Qianfei Yang, Xiang Wan
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Ge Lin
Jun Zhang
Boyuan Ding
Bo Tang
Yuying Kong
Yang Zhang
Qianfei Yang
Xiang Wan
description A method for recognizing the type of a vortex signal of an evaporator of a nuclear power plant on the basis of an LSTM-CNN. The method comprises: calibrating data of each channel of a vortex signal; processing the calibrated data by using a time window; processing time sequence data in a differential manner; extracting time feature information of a time sequence by means of an LSTM network; a CNN network extracting local feature information of the time sequence; fusing the feature information of the LSTM network and that of the CNN network, wherein after the training and learning of a large amount of data, the feature information thereof can be represented by means of an input signal in vector form by using a triple loss principle; and constructing a defect signal feature database, representing same in vector form, comparing same to obtain the Euclidean distance between the vector feature of the input signal and the vector feature in a defect library, determining, according to the magnitude of the Euclidean distance, the category to which the signal belongs, and ultimately achieving the aim of classifying the vortex signal.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_GB2616996A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>GB2616996A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_GB2616996A3</originalsourceid><addsrcrecordid>eNqFijsOwjAQRNNQIOAM7AVSAFKklBDxKUga0kdLWBtL1q5lm_A5PY5ETzOjefOmmaop3uUGSjx46kWz-RjWEN-OQBQM4iO9IBjNaEdAAzrxGJOfFj96S-jByZNSWuQIwnDFYML4ny9tnVdNM88mCm2gxa9n2fKwb6tTTk46Cg57YordcbcuVkVZFtvNf-MLIu49vg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Method for recognizing type of vortex signal of evaporator of nuclear power plant on basis of LSTM-CNN</title><source>esp@cenet</source><creator>Ge Lin ; Jun Zhang ; Boyuan Ding ; Bo Tang ; Yuying Kong ; Yang Zhang ; Qianfei Yang ; Xiang Wan</creator><creatorcontrib>Ge Lin ; Jun Zhang ; Boyuan Ding ; Bo Tang ; Yuying Kong ; Yang Zhang ; Qianfei Yang ; Xiang Wan</creatorcontrib><description>A method for recognizing the type of a vortex signal of an evaporator of a nuclear power plant on the basis of an LSTM-CNN. The method comprises: calibrating data of each channel of a vortex signal; processing the calibrated data by using a time window; processing time sequence data in a differential manner; extracting time feature information of a time sequence by means of an LSTM network; a CNN network extracting local feature information of the time sequence; fusing the feature information of the LSTM network and that of the CNN network, wherein after the training and learning of a large amount of data, the feature information thereof can be represented by means of an input signal in vector form by using a triple loss principle; and constructing a defect signal feature database, representing same in vector form, comparing same to obtain the Euclidean distance between the vector feature of the input signal and the vector feature in a defect library, determining, according to the magnitude of the Euclidean distance, the category to which the signal belongs, and ultimately achieving the aim of classifying the vortex signal.</description><language>eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230927&amp;DB=EPODOC&amp;CC=GB&amp;NR=2616996A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230927&amp;DB=EPODOC&amp;CC=GB&amp;NR=2616996A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Ge Lin</creatorcontrib><creatorcontrib>Jun Zhang</creatorcontrib><creatorcontrib>Boyuan Ding</creatorcontrib><creatorcontrib>Bo Tang</creatorcontrib><creatorcontrib>Yuying Kong</creatorcontrib><creatorcontrib>Yang Zhang</creatorcontrib><creatorcontrib>Qianfei Yang</creatorcontrib><creatorcontrib>Xiang Wan</creatorcontrib><title>Method for recognizing type of vortex signal of evaporator of nuclear power plant on basis of LSTM-CNN</title><description>A method for recognizing the type of a vortex signal of an evaporator of a nuclear power plant on the basis of an LSTM-CNN. The method comprises: calibrating data of each channel of a vortex signal; processing the calibrated data by using a time window; processing time sequence data in a differential manner; extracting time feature information of a time sequence by means of an LSTM network; a CNN network extracting local feature information of the time sequence; fusing the feature information of the LSTM network and that of the CNN network, wherein after the training and learning of a large amount of data, the feature information thereof can be represented by means of an input signal in vector form by using a triple loss principle; and constructing a defect signal feature database, representing same in vector form, comparing same to obtain the Euclidean distance between the vector feature of the input signal and the vector feature in a defect library, determining, according to the magnitude of the Euclidean distance, the category to which the signal belongs, and ultimately achieving the aim of classifying the vortex signal.</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqFijsOwjAQRNNQIOAM7AVSAFKklBDxKUga0kdLWBtL1q5lm_A5PY5ETzOjefOmmaop3uUGSjx46kWz-RjWEN-OQBQM4iO9IBjNaEdAAzrxGJOfFj96S-jByZNSWuQIwnDFYML4ny9tnVdNM88mCm2gxa9n2fKwb6tTTk46Cg57YordcbcuVkVZFtvNf-MLIu49vg</recordid><startdate>20230927</startdate><enddate>20230927</enddate><creator>Ge Lin</creator><creator>Jun Zhang</creator><creator>Boyuan Ding</creator><creator>Bo Tang</creator><creator>Yuying Kong</creator><creator>Yang Zhang</creator><creator>Qianfei Yang</creator><creator>Xiang Wan</creator><scope>EVB</scope></search><sort><creationdate>20230927</creationdate><title>Method for recognizing type of vortex signal of evaporator of nuclear power plant on basis of LSTM-CNN</title><author>Ge Lin ; Jun Zhang ; Boyuan Ding ; Bo Tang ; Yuying Kong ; Yang Zhang ; Qianfei Yang ; Xiang Wan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_GB2616996A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Ge Lin</creatorcontrib><creatorcontrib>Jun Zhang</creatorcontrib><creatorcontrib>Boyuan Ding</creatorcontrib><creatorcontrib>Bo Tang</creatorcontrib><creatorcontrib>Yuying Kong</creatorcontrib><creatorcontrib>Yang Zhang</creatorcontrib><creatorcontrib>Qianfei Yang</creatorcontrib><creatorcontrib>Xiang Wan</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ge Lin</au><au>Jun Zhang</au><au>Boyuan Ding</au><au>Bo Tang</au><au>Yuying Kong</au><au>Yang Zhang</au><au>Qianfei Yang</au><au>Xiang Wan</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Method for recognizing type of vortex signal of evaporator of nuclear power plant on basis of LSTM-CNN</title><date>2023-09-27</date><risdate>2023</risdate><abstract>A method for recognizing the type of a vortex signal of an evaporator of a nuclear power plant on the basis of an LSTM-CNN. The method comprises: calibrating data of each channel of a vortex signal; processing the calibrated data by using a time window; processing time sequence data in a differential manner; extracting time feature information of a time sequence by means of an LSTM network; a CNN network extracting local feature information of the time sequence; fusing the feature information of the LSTM network and that of the CNN network, wherein after the training and learning of a large amount of data, the feature information thereof can be represented by means of an input signal in vector form by using a triple loss principle; and constructing a defect signal feature database, representing same in vector form, comparing same to obtain the Euclidean distance between the vector feature of the input signal and the vector feature in a defect library, determining, according to the magnitude of the Euclidean distance, the category to which the signal belongs, and ultimately achieving the aim of classifying the vortex signal.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_GB2616996A
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title Method for recognizing type of vortex signal of evaporator of nuclear power plant on basis of LSTM-CNN
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T06%3A31%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Ge%20Lin&rft.date=2023-09-27&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EGB2616996A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true