Geological property modeling with neural network representations

A neural network trainer trains neural networks to estimate secondary data at locations throughout a geological formation where secondary data is unknown. The neural networks are trained to estimate secondary data using locations in the geological formation as input. Subsequently, the secondary data...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Mehran Hassanpour, Steven Bryan Ward, Genbao Shi
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Mehran Hassanpour
Steven Bryan Ward
Genbao Shi
description A neural network trainer trains neural networks to estimate secondary data at locations throughout a geological formation where secondary data is unknown. The neural networks are trained to estimate secondary data using locations in the geological formation as input. Subsequently, the secondary data is deleted from memory using the trained neural network as a proxy representation to reduce memory footprint and allow for estimation of secondary data at locations where it is unknown.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_GB2615472A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>GB2615472A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_GB2615472A3</originalsourceid><addsrcrecordid>eNrjZHBwT83PyU_PTE7MUSgoyi9ILSqpVMjNT0nNycxLVyjPLMlQyEstLQLK5qWWlOcXZSsUpRYUpRan5pUklmTm5xXzMLCmJeYUp_JCaW4GeTfXEGcP3dSC_PjU4oLE5FSgznh3JyMzQ1MTcyNHY8IqAIGYMYY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Geological property modeling with neural network representations</title><source>esp@cenet</source><creator>Mehran Hassanpour ; Steven Bryan Ward ; Genbao Shi</creator><creatorcontrib>Mehran Hassanpour ; Steven Bryan Ward ; Genbao Shi</creatorcontrib><description>A neural network trainer trains neural networks to estimate secondary data at locations throughout a geological formation where secondary data is unknown. The neural networks are trained to estimate secondary data using locations in the geological formation as input. Subsequently, the secondary data is deleted from memory using the trained neural network as a proxy representation to reduce memory footprint and allow for estimation of secondary data at locations where it is unknown.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; DETECTING MASSES OR OBJECTS ; EARTH DRILLING ; EARTH DRILLING, e.g. DEEP DRILLING ; FIXED CONSTRUCTIONS ; GEOPHYSICS ; GRAVITATIONAL MEASUREMENTS ; MEASURING ; MINING ; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR ASLURRY OF MINERALS FROM WELLS ; PHYSICS ; TESTING</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230809&amp;DB=EPODOC&amp;CC=GB&amp;NR=2615472A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76290</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230809&amp;DB=EPODOC&amp;CC=GB&amp;NR=2615472A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Mehran Hassanpour</creatorcontrib><creatorcontrib>Steven Bryan Ward</creatorcontrib><creatorcontrib>Genbao Shi</creatorcontrib><title>Geological property modeling with neural network representations</title><description>A neural network trainer trains neural networks to estimate secondary data at locations throughout a geological formation where secondary data is unknown. The neural networks are trained to estimate secondary data using locations in the geological formation as input. Subsequently, the secondary data is deleted from memory using the trained neural network as a proxy representation to reduce memory footprint and allow for estimation of secondary data at locations where it is unknown.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DETECTING MASSES OR OBJECTS</subject><subject>EARTH DRILLING</subject><subject>EARTH DRILLING, e.g. DEEP DRILLING</subject><subject>FIXED CONSTRUCTIONS</subject><subject>GEOPHYSICS</subject><subject>GRAVITATIONAL MEASUREMENTS</subject><subject>MEASURING</subject><subject>MINING</subject><subject>OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR ASLURRY OF MINERALS FROM WELLS</subject><subject>PHYSICS</subject><subject>TESTING</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZHBwT83PyU_PTE7MUSgoyi9ILSqpVMjNT0nNycxLVyjPLMlQyEstLQLK5qWWlOcXZSsUpRYUpRan5pUklmTm5xXzMLCmJeYUp_JCaW4GeTfXEGcP3dSC_PjU4oLE5FSgznh3JyMzQ1MTcyNHY8IqAIGYMYY</recordid><startdate>20230809</startdate><enddate>20230809</enddate><creator>Mehran Hassanpour</creator><creator>Steven Bryan Ward</creator><creator>Genbao Shi</creator><scope>EVB</scope></search><sort><creationdate>20230809</creationdate><title>Geological property modeling with neural network representations</title><author>Mehran Hassanpour ; Steven Bryan Ward ; Genbao Shi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_GB2615472A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DETECTING MASSES OR OBJECTS</topic><topic>EARTH DRILLING</topic><topic>EARTH DRILLING, e.g. DEEP DRILLING</topic><topic>FIXED CONSTRUCTIONS</topic><topic>GEOPHYSICS</topic><topic>GRAVITATIONAL MEASUREMENTS</topic><topic>MEASURING</topic><topic>MINING</topic><topic>OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR ASLURRY OF MINERALS FROM WELLS</topic><topic>PHYSICS</topic><topic>TESTING</topic><toplevel>online_resources</toplevel><creatorcontrib>Mehran Hassanpour</creatorcontrib><creatorcontrib>Steven Bryan Ward</creatorcontrib><creatorcontrib>Genbao Shi</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mehran Hassanpour</au><au>Steven Bryan Ward</au><au>Genbao Shi</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Geological property modeling with neural network representations</title><date>2023-08-09</date><risdate>2023</risdate><abstract>A neural network trainer trains neural networks to estimate secondary data at locations throughout a geological formation where secondary data is unknown. The neural networks are trained to estimate secondary data using locations in the geological formation as input. Subsequently, the secondary data is deleted from memory using the trained neural network as a proxy representation to reduce memory footprint and allow for estimation of secondary data at locations where it is unknown.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_GB2615472A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
DETECTING MASSES OR OBJECTS
EARTH DRILLING
EARTH DRILLING, e.g. DEEP DRILLING
FIXED CONSTRUCTIONS
GEOPHYSICS
GRAVITATIONAL MEASUREMENTS
MEASURING
MINING
OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR ASLURRY OF MINERALS FROM WELLS
PHYSICS
TESTING
title Geological property modeling with neural network representations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T20%3A36%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Mehran%20Hassanpour&rft.date=2023-08-09&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EGB2615472A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true