Geological property modeling with neural network representations
A neural network trainer trains neural networks to estimate secondary data at locations throughout a geological formation where secondary data is unknown. The neural networks are trained to estimate secondary data using locations in the geological formation as input. Subsequently, the secondary data...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Mehran Hassanpour Steven Bryan Ward Genbao Shi |
description | A neural network trainer trains neural networks to estimate secondary data at locations throughout a geological formation where secondary data is unknown. The neural networks are trained to estimate secondary data using locations in the geological formation as input. Subsequently, the secondary data is deleted from memory using the trained neural network as a proxy representation to reduce memory footprint and allow for estimation of secondary data at locations where it is unknown. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_GB2615472A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>GB2615472A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_GB2615472A3</originalsourceid><addsrcrecordid>eNrjZHBwT83PyU_PTE7MUSgoyi9ILSqpVMjNT0nNycxLVyjPLMlQyEstLQLK5qWWlOcXZSsUpRYUpRan5pUklmTm5xXzMLCmJeYUp_JCaW4GeTfXEGcP3dSC_PjU4oLE5FSgznh3JyMzQ1MTcyNHY8IqAIGYMYY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Geological property modeling with neural network representations</title><source>esp@cenet</source><creator>Mehran Hassanpour ; Steven Bryan Ward ; Genbao Shi</creator><creatorcontrib>Mehran Hassanpour ; Steven Bryan Ward ; Genbao Shi</creatorcontrib><description>A neural network trainer trains neural networks to estimate secondary data at locations throughout a geological formation where secondary data is unknown. The neural networks are trained to estimate secondary data using locations in the geological formation as input. Subsequently, the secondary data is deleted from memory using the trained neural network as a proxy representation to reduce memory footprint and allow for estimation of secondary data at locations where it is unknown.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; DETECTING MASSES OR OBJECTS ; EARTH DRILLING ; EARTH DRILLING, e.g. DEEP DRILLING ; FIXED CONSTRUCTIONS ; GEOPHYSICS ; GRAVITATIONAL MEASUREMENTS ; MEASURING ; MINING ; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR ASLURRY OF MINERALS FROM WELLS ; PHYSICS ; TESTING</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230809&DB=EPODOC&CC=GB&NR=2615472A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76290</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230809&DB=EPODOC&CC=GB&NR=2615472A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Mehran Hassanpour</creatorcontrib><creatorcontrib>Steven Bryan Ward</creatorcontrib><creatorcontrib>Genbao Shi</creatorcontrib><title>Geological property modeling with neural network representations</title><description>A neural network trainer trains neural networks to estimate secondary data at locations throughout a geological formation where secondary data is unknown. The neural networks are trained to estimate secondary data using locations in the geological formation as input. Subsequently, the secondary data is deleted from memory using the trained neural network as a proxy representation to reduce memory footprint and allow for estimation of secondary data at locations where it is unknown.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DETECTING MASSES OR OBJECTS</subject><subject>EARTH DRILLING</subject><subject>EARTH DRILLING, e.g. DEEP DRILLING</subject><subject>FIXED CONSTRUCTIONS</subject><subject>GEOPHYSICS</subject><subject>GRAVITATIONAL MEASUREMENTS</subject><subject>MEASURING</subject><subject>MINING</subject><subject>OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR ASLURRY OF MINERALS FROM WELLS</subject><subject>PHYSICS</subject><subject>TESTING</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZHBwT83PyU_PTE7MUSgoyi9ILSqpVMjNT0nNycxLVyjPLMlQyEstLQLK5qWWlOcXZSsUpRYUpRan5pUklmTm5xXzMLCmJeYUp_JCaW4GeTfXEGcP3dSC_PjU4oLE5FSgznh3JyMzQ1MTcyNHY8IqAIGYMYY</recordid><startdate>20230809</startdate><enddate>20230809</enddate><creator>Mehran Hassanpour</creator><creator>Steven Bryan Ward</creator><creator>Genbao Shi</creator><scope>EVB</scope></search><sort><creationdate>20230809</creationdate><title>Geological property modeling with neural network representations</title><author>Mehran Hassanpour ; Steven Bryan Ward ; Genbao Shi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_GB2615472A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DETECTING MASSES OR OBJECTS</topic><topic>EARTH DRILLING</topic><topic>EARTH DRILLING, e.g. DEEP DRILLING</topic><topic>FIXED CONSTRUCTIONS</topic><topic>GEOPHYSICS</topic><topic>GRAVITATIONAL MEASUREMENTS</topic><topic>MEASURING</topic><topic>MINING</topic><topic>OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR ASLURRY OF MINERALS FROM WELLS</topic><topic>PHYSICS</topic><topic>TESTING</topic><toplevel>online_resources</toplevel><creatorcontrib>Mehran Hassanpour</creatorcontrib><creatorcontrib>Steven Bryan Ward</creatorcontrib><creatorcontrib>Genbao Shi</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mehran Hassanpour</au><au>Steven Bryan Ward</au><au>Genbao Shi</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Geological property modeling with neural network representations</title><date>2023-08-09</date><risdate>2023</risdate><abstract>A neural network trainer trains neural networks to estimate secondary data at locations throughout a geological formation where secondary data is unknown. The neural networks are trained to estimate secondary data using locations in the geological formation as input. Subsequently, the secondary data is deleted from memory using the trained neural network as a proxy representation to reduce memory footprint and allow for estimation of secondary data at locations where it is unknown.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_GB2615472A |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING DETECTING MASSES OR OBJECTS EARTH DRILLING EARTH DRILLING, e.g. DEEP DRILLING FIXED CONSTRUCTIONS GEOPHYSICS GRAVITATIONAL MEASUREMENTS MEASURING MINING OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR ASLURRY OF MINERALS FROM WELLS PHYSICS TESTING |
title | Geological property modeling with neural network representations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T20%3A36%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Mehran%20Hassanpour&rft.date=2023-08-09&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EGB2615472A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |