Generating a hybrid sensor to compensate for intrusive sampling

A hybrid sensor can be generated by training a machine learning model, such as a neural network, based on a training data set. The training data set can include a first time series of upstream sensor data (504, 514, 702, 802) having forward dependence to a target variable (108, 110, 112, 604, 708, 8...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Wesley M. Gifford, Dharmashankar Subramanian, Nianjun Zhou
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Wesley M. Gifford
Dharmashankar Subramanian
Nianjun Zhou
description A hybrid sensor can be generated by training a machine learning model, such as a neural network, based on a training data set. The training data set can include a first time series of upstream sensor data (504, 514, 702, 802) having forward dependence to a target variable (108, 110, 112, 604, 708, 804), a second time series of downstream sensor data (508, 518, 704, 806) having backward dependence to the target variable (108, 110, 112, 604, 708, 804) and a time series of measured target variable (108, 110, 112, 604, 708, 804) data associated with the target variable (108, 110, 112, 604, 708, 804). The target variable (108, 110, 112, 604, 708, 804) has measuring frequency which is lower than the measuring frequencies associated with the upstream sensor data (504, 514, 70, 802) and the downstream sensor data (508, 518, 704, 806). The hybrid sensor can estimate a value of the target variable (108, 110, 112, 604, 708, 804) at a given time, for example, during which no actual measured target variable (108, 110, 112, 604, 708, 804) value is available.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_GB2612470A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>GB2612470A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_GB2612470A3</originalsourceid><addsrcrecordid>eNrjZLB3T81LLUosycxLV0hUyKhMKspMUShOzSvOL1IoyVdIzs8tAHISS1IV0oAimXklRaXFmWWpCsWJuQU5QE08DKxpiTnFqbxQmptB3s01xNlDN7UgPz61uCAxGWh-Sby7k5GZoZGJuYGjMWEVAPC2MFw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Generating a hybrid sensor to compensate for intrusive sampling</title><source>esp@cenet</source><creator>Wesley M. Gifford ; Dharmashankar Subramanian ; Nianjun Zhou</creator><creatorcontrib>Wesley M. Gifford ; Dharmashankar Subramanian ; Nianjun Zhou</creatorcontrib><description>A hybrid sensor can be generated by training a machine learning model, such as a neural network, based on a training data set. The training data set can include a first time series of upstream sensor data (504, 514, 702, 802) having forward dependence to a target variable (108, 110, 112, 604, 708, 804), a second time series of downstream sensor data (508, 518, 704, 806) having backward dependence to the target variable (108, 110, 112, 604, 708, 804) and a time series of measured target variable (108, 110, 112, 604, 708, 804) data associated with the target variable (108, 110, 112, 604, 708, 804). The target variable (108, 110, 112, 604, 708, 804) has measuring frequency which is lower than the measuring frequencies associated with the upstream sensor data (504, 514, 70, 802) and the downstream sensor data (508, 518, 704, 806). The hybrid sensor can estimate a value of the target variable (108, 110, 112, 604, 708, 804) at a given time, for example, during which no actual measured target variable (108, 110, 112, 604, 708, 804) value is available.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230503&amp;DB=EPODOC&amp;CC=GB&amp;NR=2612470A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76290</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230503&amp;DB=EPODOC&amp;CC=GB&amp;NR=2612470A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Wesley M. Gifford</creatorcontrib><creatorcontrib>Dharmashankar Subramanian</creatorcontrib><creatorcontrib>Nianjun Zhou</creatorcontrib><title>Generating a hybrid sensor to compensate for intrusive sampling</title><description>A hybrid sensor can be generated by training a machine learning model, such as a neural network, based on a training data set. The training data set can include a first time series of upstream sensor data (504, 514, 702, 802) having forward dependence to a target variable (108, 110, 112, 604, 708, 804), a second time series of downstream sensor data (508, 518, 704, 806) having backward dependence to the target variable (108, 110, 112, 604, 708, 804) and a time series of measured target variable (108, 110, 112, 604, 708, 804) data associated with the target variable (108, 110, 112, 604, 708, 804). The target variable (108, 110, 112, 604, 708, 804) has measuring frequency which is lower than the measuring frequencies associated with the upstream sensor data (504, 514, 70, 802) and the downstream sensor data (508, 518, 704, 806). The hybrid sensor can estimate a value of the target variable (108, 110, 112, 604, 708, 804) at a given time, for example, during which no actual measured target variable (108, 110, 112, 604, 708, 804) value is available.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZLB3T81LLUosycxLV0hUyKhMKspMUShOzSvOL1IoyVdIzs8tAHISS1IV0oAimXklRaXFmWWpCsWJuQU5QE08DKxpiTnFqbxQmptB3s01xNlDN7UgPz61uCAxGWh-Sby7k5GZoZGJuYGjMWEVAPC2MFw</recordid><startdate>20230503</startdate><enddate>20230503</enddate><creator>Wesley M. Gifford</creator><creator>Dharmashankar Subramanian</creator><creator>Nianjun Zhou</creator><scope>EVB</scope></search><sort><creationdate>20230503</creationdate><title>Generating a hybrid sensor to compensate for intrusive sampling</title><author>Wesley M. Gifford ; Dharmashankar Subramanian ; Nianjun Zhou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_GB2612470A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Wesley M. Gifford</creatorcontrib><creatorcontrib>Dharmashankar Subramanian</creatorcontrib><creatorcontrib>Nianjun Zhou</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wesley M. Gifford</au><au>Dharmashankar Subramanian</au><au>Nianjun Zhou</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Generating a hybrid sensor to compensate for intrusive sampling</title><date>2023-05-03</date><risdate>2023</risdate><abstract>A hybrid sensor can be generated by training a machine learning model, such as a neural network, based on a training data set. The training data set can include a first time series of upstream sensor data (504, 514, 702, 802) having forward dependence to a target variable (108, 110, 112, 604, 708, 804), a second time series of downstream sensor data (508, 518, 704, 806) having backward dependence to the target variable (108, 110, 112, 604, 708, 804) and a time series of measured target variable (108, 110, 112, 604, 708, 804) data associated with the target variable (108, 110, 112, 604, 708, 804). The target variable (108, 110, 112, 604, 708, 804) has measuring frequency which is lower than the measuring frequencies associated with the upstream sensor data (504, 514, 70, 802) and the downstream sensor data (508, 518, 704, 806). The hybrid sensor can estimate a value of the target variable (108, 110, 112, 604, 708, 804) at a given time, for example, during which no actual measured target variable (108, 110, 112, 604, 708, 804) value is available.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_GB2612470A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
PHYSICS
title Generating a hybrid sensor to compensate for intrusive sampling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T13%3A43%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Wesley%20M.%20Gifford&rft.date=2023-05-03&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EGB2612470A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true