Computer-implemented methods of enabling optimisation of trajectory for a vehicle

A computer-implemented method of enabling optimisation of trajectory for a vehicle such as an aircraft. The method comprises determining a trajectory for the vehicle 112 using: an algorithm; a vehicle model defining path constraints for the vehicle through space 98; a propulsion system model definin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Derek S Wall, Peter A Beecroft, Romain Guicherd, Andrew R Mills, Marko Bacic
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Derek S Wall
Peter A Beecroft
Romain Guicherd
Andrew R Mills
Marko Bacic
description A computer-implemented method of enabling optimisation of trajectory for a vehicle such as an aircraft. The method comprises determining a trajectory for the vehicle 112 using: an algorithm; a vehicle model defining path constraints for the vehicle through space 98; a propulsion system model defining parameters of a propulsion system of the vehicle; an objective function defining one or more objectives; and controlling output of the determined trajectory 114. The trajectory may be output to an automated vehicle control system such as an automatic flight control system. Vehicle operational parameters including vehicle orientation demand and propulsion system thrust demand may be determined 118 for control of the vehicle 120. A derate of the propulsion system may be determined using a navigational model 100. The trajectory may be for a take-off phase or a climb phase of an aircraft.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_GB2610200A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>GB2610200A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_GB2610200A3</originalsourceid><addsrcrecordid>eNqFyr0KwjAUhuEsDqJeg-cGCrGCuy3-rIJ7iekXG0lyQnIUvHsR3J3e4Xnn6tJzzE9BaXzMARFJMFKETDxWYkdI5hZ8uhNn8dFXI57TF6SYB6xweZPjQoZemLwNWKqZM6Fi9etCrY-Ha39ukHlAzcYiQYZT1-42utV6v_1_fABMtzc3</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Computer-implemented methods of enabling optimisation of trajectory for a vehicle</title><source>esp@cenet</source><creator>Derek S Wall ; Peter A Beecroft ; Romain Guicherd ; Andrew R Mills ; Marko Bacic</creator><creatorcontrib>Derek S Wall ; Peter A Beecroft ; Romain Guicherd ; Andrew R Mills ; Marko Bacic</creatorcontrib><description>A computer-implemented method of enabling optimisation of trajectory for a vehicle such as an aircraft. The method comprises determining a trajectory for the vehicle 112 using: an algorithm; a vehicle model defining path constraints for the vehicle through space 98; a propulsion system model defining parameters of a propulsion system of the vehicle; an objective function defining one or more objectives; and controlling output of the determined trajectory 114. The trajectory may be output to an automated vehicle control system such as an automatic flight control system. Vehicle operational parameters including vehicle orientation demand and propulsion system thrust demand may be determined 118 for control of the vehicle 120. A derate of the propulsion system may be determined using a navigational model 100. The trajectory may be for a take-off phase or a climb phase of an aircraft.</description><language>eng</language><subject>CONTROLLING ; PHYSICS ; REGULATING ; SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230301&amp;DB=EPODOC&amp;CC=GB&amp;NR=2610200A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76290</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230301&amp;DB=EPODOC&amp;CC=GB&amp;NR=2610200A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Derek S Wall</creatorcontrib><creatorcontrib>Peter A Beecroft</creatorcontrib><creatorcontrib>Romain Guicherd</creatorcontrib><creatorcontrib>Andrew R Mills</creatorcontrib><creatorcontrib>Marko Bacic</creatorcontrib><title>Computer-implemented methods of enabling optimisation of trajectory for a vehicle</title><description>A computer-implemented method of enabling optimisation of trajectory for a vehicle such as an aircraft. The method comprises determining a trajectory for the vehicle 112 using: an algorithm; a vehicle model defining path constraints for the vehicle through space 98; a propulsion system model defining parameters of a propulsion system of the vehicle; an objective function defining one or more objectives; and controlling output of the determined trajectory 114. The trajectory may be output to an automated vehicle control system such as an automatic flight control system. Vehicle operational parameters including vehicle orientation demand and propulsion system thrust demand may be determined 118 for control of the vehicle 120. A derate of the propulsion system may be determined using a navigational model 100. The trajectory may be for a take-off phase or a climb phase of an aircraft.</description><subject>CONTROLLING</subject><subject>PHYSICS</subject><subject>REGULATING</subject><subject>SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqFyr0KwjAUhuEsDqJeg-cGCrGCuy3-rIJ7iekXG0lyQnIUvHsR3J3e4Xnn6tJzzE9BaXzMARFJMFKETDxWYkdI5hZ8uhNn8dFXI57TF6SYB6xweZPjQoZemLwNWKqZM6Fi9etCrY-Ha39ukHlAzcYiQYZT1-42utV6v_1_fABMtzc3</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Derek S Wall</creator><creator>Peter A Beecroft</creator><creator>Romain Guicherd</creator><creator>Andrew R Mills</creator><creator>Marko Bacic</creator><scope>EVB</scope></search><sort><creationdate>20230301</creationdate><title>Computer-implemented methods of enabling optimisation of trajectory for a vehicle</title><author>Derek S Wall ; Peter A Beecroft ; Romain Guicherd ; Andrew R Mills ; Marko Bacic</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_GB2610200A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2023</creationdate><topic>CONTROLLING</topic><topic>PHYSICS</topic><topic>REGULATING</topic><topic>SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES</topic><toplevel>online_resources</toplevel><creatorcontrib>Derek S Wall</creatorcontrib><creatorcontrib>Peter A Beecroft</creatorcontrib><creatorcontrib>Romain Guicherd</creatorcontrib><creatorcontrib>Andrew R Mills</creatorcontrib><creatorcontrib>Marko Bacic</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Derek S Wall</au><au>Peter A Beecroft</au><au>Romain Guicherd</au><au>Andrew R Mills</au><au>Marko Bacic</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Computer-implemented methods of enabling optimisation of trajectory for a vehicle</title><date>2023-03-01</date><risdate>2023</risdate><abstract>A computer-implemented method of enabling optimisation of trajectory for a vehicle such as an aircraft. The method comprises determining a trajectory for the vehicle 112 using: an algorithm; a vehicle model defining path constraints for the vehicle through space 98; a propulsion system model defining parameters of a propulsion system of the vehicle; an objective function defining one or more objectives; and controlling output of the determined trajectory 114. The trajectory may be output to an automated vehicle control system such as an automatic flight control system. Vehicle operational parameters including vehicle orientation demand and propulsion system thrust demand may be determined 118 for control of the vehicle 120. A derate of the propulsion system may be determined using a navigational model 100. The trajectory may be for a take-off phase or a climb phase of an aircraft.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_GB2610200A
source esp@cenet
subjects CONTROLLING
PHYSICS
REGULATING
SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
title Computer-implemented methods of enabling optimisation of trajectory for a vehicle
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T15%3A25%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Derek%20S%20Wall&rft.date=2023-03-01&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EGB2610200A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true