Automatic model selection through machine learning
A method can include receiving data for a geologic region; based at least in part on the data, selecting a model from a plurality of models using a trained machine learning model, and inverting the data using the selected model to determine parameters of the selected model.
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Keli Sun Xiao Bo Hong Xiaoyan Zhong Koji Ito |
description | A method can include receiving data for a geologic region; based at least in part on the data, selecting a model from a plurality of models using a trained machine learning model, and inverting the data using the selected model to determine parameters of the selected model. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_GB2606957B</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>GB2606957B</sourcerecordid><originalsourceid>FETCH-epo_espacenet_GB2606957B3</originalsourceid><addsrcrecordid>eNrjZDByLC3Jz00syUxWyM1PSc1RKE7NSU0uyczPUyjJKMovTc9QyE1MzsjMS1XISU0sysvMS-dhYE1LzClO5YXS3Azybq4hzh66qQX58anFBYnJqXmpJfHuTkZmBmaWpuZOxoRVAABDQyuR</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Automatic model selection through machine learning</title><source>esp@cenet</source><creator>Keli Sun ; Xiao Bo Hong ; Xiaoyan Zhong ; Koji Ito</creator><creatorcontrib>Keli Sun ; Xiao Bo Hong ; Xiaoyan Zhong ; Koji Ito</creatorcontrib><description>A method can include receiving data for a geologic region; based at least in part on the data, selecting a model from a plurality of models using a trained machine learning model, and inverting the data using the selected model to determine parameters of the selected model.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; DETECTING MASSES OR OBJECTS ; GEOPHYSICS ; GRAVITATIONAL MEASUREMENTS ; MEASURING ; PHYSICS ; TESTING</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240228&DB=EPODOC&CC=GB&NR=2606957B$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76290</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240228&DB=EPODOC&CC=GB&NR=2606957B$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Keli Sun</creatorcontrib><creatorcontrib>Xiao Bo Hong</creatorcontrib><creatorcontrib>Xiaoyan Zhong</creatorcontrib><creatorcontrib>Koji Ito</creatorcontrib><title>Automatic model selection through machine learning</title><description>A method can include receiving data for a geologic region; based at least in part on the data, selecting a model from a plurality of models using a trained machine learning model, and inverting the data using the selected model to determine parameters of the selected model.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DETECTING MASSES OR OBJECTS</subject><subject>GEOPHYSICS</subject><subject>GRAVITATIONAL MEASUREMENTS</subject><subject>MEASURING</subject><subject>PHYSICS</subject><subject>TESTING</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZDByLC3Jz00syUxWyM1PSc1RKE7NSU0uyczPUyjJKMovTc9QyE1MzsjMS1XISU0sysvMS-dhYE1LzClO5YXS3Azybq4hzh66qQX58anFBYnJqXmpJfHuTkZmBmaWpuZOxoRVAABDQyuR</recordid><startdate>20240228</startdate><enddate>20240228</enddate><creator>Keli Sun</creator><creator>Xiao Bo Hong</creator><creator>Xiaoyan Zhong</creator><creator>Koji Ito</creator><scope>EVB</scope></search><sort><creationdate>20240228</creationdate><title>Automatic model selection through machine learning</title><author>Keli Sun ; Xiao Bo Hong ; Xiaoyan Zhong ; Koji Ito</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_GB2606957B3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DETECTING MASSES OR OBJECTS</topic><topic>GEOPHYSICS</topic><topic>GRAVITATIONAL MEASUREMENTS</topic><topic>MEASURING</topic><topic>PHYSICS</topic><topic>TESTING</topic><toplevel>online_resources</toplevel><creatorcontrib>Keli Sun</creatorcontrib><creatorcontrib>Xiao Bo Hong</creatorcontrib><creatorcontrib>Xiaoyan Zhong</creatorcontrib><creatorcontrib>Koji Ito</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Keli Sun</au><au>Xiao Bo Hong</au><au>Xiaoyan Zhong</au><au>Koji Ito</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Automatic model selection through machine learning</title><date>2024-02-28</date><risdate>2024</risdate><abstract>A method can include receiving data for a geologic region; based at least in part on the data, selecting a model from a plurality of models using a trained machine learning model, and inverting the data using the selected model to determine parameters of the selected model.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_GB2606957B |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING DETECTING MASSES OR OBJECTS GEOPHYSICS GRAVITATIONAL MEASUREMENTS MEASURING PHYSICS TESTING |
title | Automatic model selection through machine learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T12%3A25%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Keli%20Sun&rft.date=2024-02-28&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EGB2606957B%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |