A deep embedded self-taught learning system and method for detecting suspicious network behaviours

The invention processes network traffic data to detect and classify malicious behaviours. The invention pre-processes 205 network traffic data to extract time-series features, tokenise categorical features and embed tokenised features into dimensional embedding vectors. The pre-processed traffic dat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Chan Jin Hao, Quek Hanyang, Lee Joon Sern
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Chan Jin Hao
Quek Hanyang
Lee Joon Sern
description The invention processes network traffic data to detect and classify malicious behaviours. The invention pre-processes 205 network traffic data to extract time-series features, tokenise categorical features and embed tokenised features into dimensional embedding vectors. The pre-processed traffic data is fed into an autoencoder 212 (typically a deep neural network) which produces a lower dimension encoding 218 of the traffic data. The encoder output feeds a classifier neural network 225 which detects patterns which match malicious behaviour and possibly issues an alert.The autoencoder is trained by bootstrapping using a training set of traffic data. The classifier is first trained/initialised using labelled training data, and then subsequently trained using a mix of labelled data (static labels) and unlabelled data (dynamic labels).
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_GB2601401A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>GB2601401A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_GB2601401A3</originalsourceid><addsrcrecordid>eNqFi0sOgjAURZk4MOoafBsgATXO0fhZgHNS2ltogLbpe2jcvcQ4d3SSe-5ZZk1FBoiEsYExMMQYbC5qajuhASp551viNwtGUt7QCOmCIRvSHAq0fP3E0WkXJiYPeYXUU4NOPecl8TpbWDUwNj-usu318jjfc8RQg6PSmKP6dtodi_JQlNX-_-MDYf49fg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>A deep embedded self-taught learning system and method for detecting suspicious network behaviours</title><source>esp@cenet</source><creator>Chan Jin Hao ; Quek Hanyang ; Lee Joon Sern</creator><creatorcontrib>Chan Jin Hao ; Quek Hanyang ; Lee Joon Sern</creatorcontrib><description>The invention processes network traffic data to detect and classify malicious behaviours. The invention pre-processes 205 network traffic data to extract time-series features, tokenise categorical features and embed tokenised features into dimensional embedding vectors. The pre-processed traffic data is fed into an autoencoder 212 (typically a deep neural network) which produces a lower dimension encoding 218 of the traffic data. The encoder output feeds a classifier neural network 225 which detects patterns which match malicious behaviour and possibly issues an alert.The autoencoder is trained by bootstrapping using a training set of traffic data. The classifier is first trained/initialised using labelled training data, and then subsequently trained using a mix of labelled data (static labels) and unlabelled data (dynamic labels).</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC COMMUNICATION TECHNIQUE ; ELECTRIC DIGITAL DATA PROCESSING ; ELECTRICITY ; PHYSICS ; TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220601&amp;DB=EPODOC&amp;CC=GB&amp;NR=2601401A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220601&amp;DB=EPODOC&amp;CC=GB&amp;NR=2601401A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Chan Jin Hao</creatorcontrib><creatorcontrib>Quek Hanyang</creatorcontrib><creatorcontrib>Lee Joon Sern</creatorcontrib><title>A deep embedded self-taught learning system and method for detecting suspicious network behaviours</title><description>The invention processes network traffic data to detect and classify malicious behaviours. The invention pre-processes 205 network traffic data to extract time-series features, tokenise categorical features and embed tokenised features into dimensional embedding vectors. The pre-processed traffic data is fed into an autoencoder 212 (typically a deep neural network) which produces a lower dimension encoding 218 of the traffic data. The encoder output feeds a classifier neural network 225 which detects patterns which match malicious behaviour and possibly issues an alert.The autoencoder is trained by bootstrapping using a training set of traffic data. The classifier is first trained/initialised using labelled training data, and then subsequently trained using a mix of labelled data (static labels) and unlabelled data (dynamic labels).</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC COMMUNICATION TECHNIQUE</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>ELECTRICITY</subject><subject>PHYSICS</subject><subject>TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqFi0sOgjAURZk4MOoafBsgATXO0fhZgHNS2ltogLbpe2jcvcQ4d3SSe-5ZZk1FBoiEsYExMMQYbC5qajuhASp551viNwtGUt7QCOmCIRvSHAq0fP3E0WkXJiYPeYXUU4NOPecl8TpbWDUwNj-usu318jjfc8RQg6PSmKP6dtodi_JQlNX-_-MDYf49fg</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Chan Jin Hao</creator><creator>Quek Hanyang</creator><creator>Lee Joon Sern</creator><scope>EVB</scope></search><sort><creationdate>20220601</creationdate><title>A deep embedded self-taught learning system and method for detecting suspicious network behaviours</title><author>Chan Jin Hao ; Quek Hanyang ; Lee Joon Sern</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_GB2601401A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC COMMUNICATION TECHNIQUE</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>ELECTRICITY</topic><topic>PHYSICS</topic><topic>TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</topic><toplevel>online_resources</toplevel><creatorcontrib>Chan Jin Hao</creatorcontrib><creatorcontrib>Quek Hanyang</creatorcontrib><creatorcontrib>Lee Joon Sern</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chan Jin Hao</au><au>Quek Hanyang</au><au>Lee Joon Sern</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>A deep embedded self-taught learning system and method for detecting suspicious network behaviours</title><date>2022-06-01</date><risdate>2022</risdate><abstract>The invention processes network traffic data to detect and classify malicious behaviours. The invention pre-processes 205 network traffic data to extract time-series features, tokenise categorical features and embed tokenised features into dimensional embedding vectors. The pre-processed traffic data is fed into an autoencoder 212 (typically a deep neural network) which produces a lower dimension encoding 218 of the traffic data. The encoder output feeds a classifier neural network 225 which detects patterns which match malicious behaviour and possibly issues an alert.The autoencoder is trained by bootstrapping using a training set of traffic data. The classifier is first trained/initialised using labelled training data, and then subsequently trained using a mix of labelled data (static labels) and unlabelled data (dynamic labels).</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_GB2601401A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC COMMUNICATION TECHNIQUE
ELECTRIC DIGITAL DATA PROCESSING
ELECTRICITY
PHYSICS
TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION
title A deep embedded self-taught learning system and method for detecting suspicious network behaviours
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T08%3A31%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Chan%20Jin%20Hao&rft.date=2022-06-01&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EGB2601401A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true