Object image completion

One or more neural networks for generating complete depictions of objects based on their partial description are disclosed. An image 114 of a whole object is generated, based on an image 106 of a portion of the object, using an encoder 108 trained using training data 102 produced from the output of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: David Acuna Marrero, Huan Ling, Sanja Fidler, Karsten Julian Kreis, Seung Wook Kim
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator David Acuna Marrero
Huan Ling
Sanja Fidler
Karsten Julian Kreis
Seung Wook Kim
description One or more neural networks for generating complete depictions of objects based on their partial description are disclosed. An image 114 of a whole object is generated, based on an image 106 of a portion of the object, using an encoder 108 trained using training data 102 produced from the output of a decoder 112. The neural network may comprise a generative model framework, which can be a variational autoencoder, a generative adversarial network (GAN) or a normalising flow. The decoder can be trained on a dataset comprising images of complete objects and excluding images of partial entities. The decoder may output a complete version of an incomplete picture input into the decoder. The decoder parameters may remain unvaried while training the encoder (Fig. 6). Two images may be entered into the encoder, with the resulting output being the first image which is partially occluded by features from the second picture. An associated training technique is also described.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_GB2599224A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>GB2599224A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_GB2599224A3</originalsourceid><addsrcrecordid>eNrjZBD3T8pKTS5RyMxNTE9VSM7PLchJLcnMz-NhYE1LzClO5YXS3Azybq4hzh66qQX58anFBYnJqXmpJfHuTkamlpZGRiaOxoRVAABAiCEA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Object image completion</title><source>esp@cenet</source><creator>David Acuna Marrero ; Huan Ling ; Sanja Fidler ; Karsten Julian Kreis ; Seung Wook Kim</creator><creatorcontrib>David Acuna Marrero ; Huan Ling ; Sanja Fidler ; Karsten Julian Kreis ; Seung Wook Kim</creatorcontrib><description>One or more neural networks for generating complete depictions of objects based on their partial description are disclosed. An image 114 of a whole object is generated, based on an image 106 of a portion of the object, using an encoder 108 trained using training data 102 produced from the output of a decoder 112. The neural network may comprise a generative model framework, which can be a variational autoencoder, a generative adversarial network (GAN) or a normalising flow. The decoder can be trained on a dataset comprising images of complete objects and excluding images of partial entities. The decoder may output a complete version of an incomplete picture input into the decoder. The decoder parameters may remain unvaried while training the encoder (Fig. 6). Two images may be entered into the encoder, with the resulting output being the first image which is partially occluded by features from the second picture. An associated training technique is also described.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE ORDIFFERENT FUNCTION ; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES ; COUNTING ; HANDLING RECORD CARRIERS ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PERFORMING OPERATIONS ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS ; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TOTHE CONTROL OF A PARTICULAR SUB-UNIT ; TRANSPORTING ; VEHICLES IN GENERAL</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220330&amp;DB=EPODOC&amp;CC=GB&amp;NR=2599224A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76289</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220330&amp;DB=EPODOC&amp;CC=GB&amp;NR=2599224A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>David Acuna Marrero</creatorcontrib><creatorcontrib>Huan Ling</creatorcontrib><creatorcontrib>Sanja Fidler</creatorcontrib><creatorcontrib>Karsten Julian Kreis</creatorcontrib><creatorcontrib>Seung Wook Kim</creatorcontrib><title>Object image completion</title><description>One or more neural networks for generating complete depictions of objects based on their partial description are disclosed. An image 114 of a whole object is generated, based on an image 106 of a portion of the object, using an encoder 108 trained using training data 102 produced from the output of a decoder 112. The neural network may comprise a generative model framework, which can be a variational autoencoder, a generative adversarial network (GAN) or a normalising flow. The decoder can be trained on a dataset comprising images of complete objects and excluding images of partial entities. The decoder may output a complete version of an incomplete picture input into the decoder. The decoder parameters may remain unvaried while training the encoder (Fig. 6). Two images may be entered into the encoder, with the resulting output being the first image which is partially occluded by features from the second picture. An associated training technique is also described.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE ORDIFFERENT FUNCTION</subject><subject>CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES</subject><subject>COUNTING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PERFORMING OPERATIONS</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><subject>ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TOTHE CONTROL OF A PARTICULAR SUB-UNIT</subject><subject>TRANSPORTING</subject><subject>VEHICLES IN GENERAL</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZBD3T8pKTS5RyMxNTE9VSM7PLchJLcnMz-NhYE1LzClO5YXS3Azybq4hzh66qQX58anFBYnJqXmpJfHuTkamlpZGRiaOxoRVAABAiCEA</recordid><startdate>20220330</startdate><enddate>20220330</enddate><creator>David Acuna Marrero</creator><creator>Huan Ling</creator><creator>Sanja Fidler</creator><creator>Karsten Julian Kreis</creator><creator>Seung Wook Kim</creator><scope>EVB</scope></search><sort><creationdate>20220330</creationdate><title>Object image completion</title><author>David Acuna Marrero ; Huan Ling ; Sanja Fidler ; Karsten Julian Kreis ; Seung Wook Kim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_GB2599224A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE ORDIFFERENT FUNCTION</topic><topic>CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES</topic><topic>COUNTING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PERFORMING OPERATIONS</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><topic>ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TOTHE CONTROL OF A PARTICULAR SUB-UNIT</topic><topic>TRANSPORTING</topic><topic>VEHICLES IN GENERAL</topic><toplevel>online_resources</toplevel><creatorcontrib>David Acuna Marrero</creatorcontrib><creatorcontrib>Huan Ling</creatorcontrib><creatorcontrib>Sanja Fidler</creatorcontrib><creatorcontrib>Karsten Julian Kreis</creatorcontrib><creatorcontrib>Seung Wook Kim</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>David Acuna Marrero</au><au>Huan Ling</au><au>Sanja Fidler</au><au>Karsten Julian Kreis</au><au>Seung Wook Kim</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Object image completion</title><date>2022-03-30</date><risdate>2022</risdate><abstract>One or more neural networks for generating complete depictions of objects based on their partial description are disclosed. An image 114 of a whole object is generated, based on an image 106 of a portion of the object, using an encoder 108 trained using training data 102 produced from the output of a decoder 112. The neural network may comprise a generative model framework, which can be a variational autoencoder, a generative adversarial network (GAN) or a normalising flow. The decoder can be trained on a dataset comprising images of complete objects and excluding images of partial entities. The decoder may output a complete version of an incomplete picture input into the decoder. The decoder parameters may remain unvaried while training the encoder (Fig. 6). Two images may be entered into the encoder, with the resulting output being the first image which is partially occluded by features from the second picture. An associated training technique is also described.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_GB2599224A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE ORDIFFERENT FUNCTION
CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES
COUNTING
HANDLING RECORD CARRIERS
IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
PERFORMING OPERATIONS
PHYSICS
PRESENTATION OF DATA
RECOGNITION OF DATA
RECORD CARRIERS
ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TOTHE CONTROL OF A PARTICULAR SUB-UNIT
TRANSPORTING
VEHICLES IN GENERAL
title Object image completion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T20%3A52%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=David%20Acuna%20Marrero&rft.date=2022-03-30&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EGB2599224A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true