Diffusion magnetic resonance imaging using spherical neural networks

The invention provides for a medical imaging system (100, 300). The medical imaging system comprises a memory (110) for storing machine executable instructions (120). The memory further contains an implementation of a trained convolutional neural network (122, 122′, 122″, 122′″, 122″″). The trained...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Evan Schwab, Arne Ewald
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Evan Schwab
Arne Ewald
description The invention provides for a medical imaging system (100, 300). The medical imaging system comprises a memory (110) for storing machine executable instructions (120). The memory further contains an implementation of a trained convolutional neural network (122, 122′, 122″, 122′″, 122″″). The trained convolutional neural network comprises more than one spherical convolutional neural network portions (502, 502′). The trained convolutional neural network is configured for receiving diffusion magnetic resonance imaging data (124). The diffusion magnetic resonance imaging data comprises a spherical diffusion portion (500, 500′). The more than one spherical convolutional neural network portions are configured for receiving the spherical diffusion portion. The trained convolutional neural network comprises an output layer (508) configured for generating a neural network output (126) in response to inputting the diffusion magnetic resonance imaging data into the trained convolutional neural network. The medical imaging system further comprises a processor (104) for controlling the machine executable instructions. Execution of the machine executable instructions causes the processor to: receive (200) the diffusion magnetic resonance imaging data; and generate (202) the neural network output by inputting the diffusion magnetic resonance imaging data into the trained convolutional neural network.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_GB2594004B</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>GB2594004B</sourcerecordid><originalsourceid>FETCH-epo_espacenet_GB2594004B3</originalsourceid><addsrcrecordid>eNrjZHBxyUxLKy3OzM9TyE1Mz0styUxWKEotzs9LzEtOVcgEimXmpSsAFQDJ4oKM1KLM5MQchbzU0iIwVVKeX5RdzMPAmpaYU5zKC6W5GeTdXEOcPXRTC_LjU4sLEpNTgUrj3Z2MTC1NDAxMnIwJqwAAOrEylw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Diffusion magnetic resonance imaging using spherical neural networks</title><source>esp@cenet</source><creator>Evan Schwab ; Arne Ewald</creator><creatorcontrib>Evan Schwab ; Arne Ewald</creatorcontrib><description>The invention provides for a medical imaging system (100, 300). The medical imaging system comprises a memory (110) for storing machine executable instructions (120). The memory further contains an implementation of a trained convolutional neural network (122, 122′, 122″, 122′″, 122″″). The trained convolutional neural network comprises more than one spherical convolutional neural network portions (502, 502′). The trained convolutional neural network is configured for receiving diffusion magnetic resonance imaging data (124). The diffusion magnetic resonance imaging data comprises a spherical diffusion portion (500, 500′). The more than one spherical convolutional neural network portions are configured for receiving the spherical diffusion portion. The trained convolutional neural network comprises an output layer (508) configured for generating a neural network output (126) in response to inputting the diffusion magnetic resonance imaging data into the trained convolutional neural network. The medical imaging system further comprises a processor (104) for controlling the machine executable instructions. Execution of the machine executable instructions causes the processor to: receive (200) the diffusion magnetic resonance imaging data; and generate (202) the neural network output by inputting the diffusion magnetic resonance imaging data into the trained convolutional neural network.</description><language>eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; MEASURING ; MEASURING ELECTRIC VARIABLES ; MEASURING MAGNETIC VARIABLES ; PHYSICS ; TESTING</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220928&amp;DB=EPODOC&amp;CC=GB&amp;NR=2594004B$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,777,882,25545,76296</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220928&amp;DB=EPODOC&amp;CC=GB&amp;NR=2594004B$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Evan Schwab</creatorcontrib><creatorcontrib>Arne Ewald</creatorcontrib><title>Diffusion magnetic resonance imaging using spherical neural networks</title><description>The invention provides for a medical imaging system (100, 300). The medical imaging system comprises a memory (110) for storing machine executable instructions (120). The memory further contains an implementation of a trained convolutional neural network (122, 122′, 122″, 122′″, 122″″). The trained convolutional neural network comprises more than one spherical convolutional neural network portions (502, 502′). The trained convolutional neural network is configured for receiving diffusion magnetic resonance imaging data (124). The diffusion magnetic resonance imaging data comprises a spherical diffusion portion (500, 500′). The more than one spherical convolutional neural network portions are configured for receiving the spherical diffusion portion. The trained convolutional neural network comprises an output layer (508) configured for generating a neural network output (126) in response to inputting the diffusion magnetic resonance imaging data into the trained convolutional neural network. The medical imaging system further comprises a processor (104) for controlling the machine executable instructions. Execution of the machine executable instructions causes the processor to: receive (200) the diffusion magnetic resonance imaging data; and generate (202) the neural network output by inputting the diffusion magnetic resonance imaging data into the trained convolutional neural network.</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>MEASURING</subject><subject>MEASURING ELECTRIC VARIABLES</subject><subject>MEASURING MAGNETIC VARIABLES</subject><subject>PHYSICS</subject><subject>TESTING</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZHBxyUxLKy3OzM9TyE1Mz0styUxWKEotzs9LzEtOVcgEimXmpSsAFQDJ4oKM1KLM5MQchbzU0iIwVVKeX5RdzMPAmpaYU5zKC6W5GeTdXEOcPXRTC_LjU4sLEpNTgUrj3Z2MTC1NDAxMnIwJqwAAOrEylw</recordid><startdate>20220928</startdate><enddate>20220928</enddate><creator>Evan Schwab</creator><creator>Arne Ewald</creator><scope>EVB</scope></search><sort><creationdate>20220928</creationdate><title>Diffusion magnetic resonance imaging using spherical neural networks</title><author>Evan Schwab ; Arne Ewald</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_GB2594004B3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>MEASURING</topic><topic>MEASURING ELECTRIC VARIABLES</topic><topic>MEASURING MAGNETIC VARIABLES</topic><topic>PHYSICS</topic><topic>TESTING</topic><toplevel>online_resources</toplevel><creatorcontrib>Evan Schwab</creatorcontrib><creatorcontrib>Arne Ewald</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Evan Schwab</au><au>Arne Ewald</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Diffusion magnetic resonance imaging using spherical neural networks</title><date>2022-09-28</date><risdate>2022</risdate><abstract>The invention provides for a medical imaging system (100, 300). The medical imaging system comprises a memory (110) for storing machine executable instructions (120). The memory further contains an implementation of a trained convolutional neural network (122, 122′, 122″, 122′″, 122″″). The trained convolutional neural network comprises more than one spherical convolutional neural network portions (502, 502′). The trained convolutional neural network is configured for receiving diffusion magnetic resonance imaging data (124). The diffusion magnetic resonance imaging data comprises a spherical diffusion portion (500, 500′). The more than one spherical convolutional neural network portions are configured for receiving the spherical diffusion portion. The trained convolutional neural network comprises an output layer (508) configured for generating a neural network output (126) in response to inputting the diffusion magnetic resonance imaging data into the trained convolutional neural network. The medical imaging system further comprises a processor (104) for controlling the machine executable instructions. Execution of the machine executable instructions causes the processor to: receive (200) the diffusion magnetic resonance imaging data; and generate (202) the neural network output by inputting the diffusion magnetic resonance imaging data into the trained convolutional neural network.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_GB2594004B
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
MEASURING
MEASURING ELECTRIC VARIABLES
MEASURING MAGNETIC VARIABLES
PHYSICS
TESTING
title Diffusion magnetic resonance imaging using spherical neural networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T12%3A10%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Evan%20Schwab&rft.date=2022-09-28&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EGB2594004B%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true