Prediction of reservoir fluid properties from mud-gas data

A method of creating a model of a subterranean reservoir for predicting property of a fluid in a reservoir comprising selecting a subset of available reservoir samples based on a degree of biodegradation of the samples, generating an input data set 102 comprising input mud-gas data and fluid propert...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Thibault Forest, Martin Niemann, Tao Yang, Knut Kristian Meisingset, Ibnu Hafidz Arief
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Thibault Forest
Martin Niemann
Tao Yang
Knut Kristian Meisingset
Ibnu Hafidz Arief
description A method of creating a model of a subterranean reservoir for predicting property of a fluid in a reservoir comprising selecting a subset of available reservoir samples based on a degree of biodegradation of the samples, generating an input data set 102 comprising input mud-gas data and fluid property data, and generating a model using a machine learning algorithm or correlation. The model can be used to predict the fluid properties for other sample locations based on mud-gas data for that location. The application of this technique allows a continuous log of the selected property to be generated using mud-gas data collected during the well drilling process.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_GB2582294A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>GB2582294A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_GB2582294A3</originalsourceid><addsrcrecordid>eNrjZLAKKEpNyUwuyczPU8hPUyhKLU4tKsvPLFJIyynNTFEoKMovSC0qyUwtVkgrys9VyC1N0U1PLFZISSxJ5GFgTUvMKU7lhdLcDPJuriHOHrqpBfnxqcUFicmpeakl8e5ORqYWRkaWJo7GhFUAANccLlE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Prediction of reservoir fluid properties from mud-gas data</title><source>esp@cenet</source><creator>Thibault Forest ; Martin Niemann ; Tao Yang ; Knut Kristian Meisingset ; Ibnu Hafidz Arief</creator><creatorcontrib>Thibault Forest ; Martin Niemann ; Tao Yang ; Knut Kristian Meisingset ; Ibnu Hafidz Arief</creatorcontrib><description>A method of creating a model of a subterranean reservoir for predicting property of a fluid in a reservoir comprising selecting a subset of available reservoir samples based on a degree of biodegradation of the samples, generating an input data set 102 comprising input mud-gas data and fluid property data, and generating a model using a machine learning algorithm or correlation. The model can be used to predict the fluid properties for other sample locations based on mud-gas data for that location. The application of this technique allows a continuous log of the selected property to be generated using mud-gas data collected during the well drilling process.</description><language>eng</language><subject>DETECTING MASSES OR OBJECTS ; EARTH DRILLING ; EARTH DRILLING, e.g. DEEP DRILLING ; FIXED CONSTRUCTIONS ; GEOPHYSICS ; GRAVITATIONAL MEASUREMENTS ; MEASURING ; MINING ; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR ASLURRY OF MINERALS FROM WELLS ; PHYSICS ; TESTING</subject><creationdate>2020</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20200923&amp;DB=EPODOC&amp;CC=GB&amp;NR=2582294A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25562,76317</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20200923&amp;DB=EPODOC&amp;CC=GB&amp;NR=2582294A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Thibault Forest</creatorcontrib><creatorcontrib>Martin Niemann</creatorcontrib><creatorcontrib>Tao Yang</creatorcontrib><creatorcontrib>Knut Kristian Meisingset</creatorcontrib><creatorcontrib>Ibnu Hafidz Arief</creatorcontrib><title>Prediction of reservoir fluid properties from mud-gas data</title><description>A method of creating a model of a subterranean reservoir for predicting property of a fluid in a reservoir comprising selecting a subset of available reservoir samples based on a degree of biodegradation of the samples, generating an input data set 102 comprising input mud-gas data and fluid property data, and generating a model using a machine learning algorithm or correlation. The model can be used to predict the fluid properties for other sample locations based on mud-gas data for that location. The application of this technique allows a continuous log of the selected property to be generated using mud-gas data collected during the well drilling process.</description><subject>DETECTING MASSES OR OBJECTS</subject><subject>EARTH DRILLING</subject><subject>EARTH DRILLING, e.g. DEEP DRILLING</subject><subject>FIXED CONSTRUCTIONS</subject><subject>GEOPHYSICS</subject><subject>GRAVITATIONAL MEASUREMENTS</subject><subject>MEASURING</subject><subject>MINING</subject><subject>OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR ASLURRY OF MINERALS FROM WELLS</subject><subject>PHYSICS</subject><subject>TESTING</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2020</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZLAKKEpNyUwuyczPU8hPUyhKLU4tKsvPLFJIyynNTFEoKMovSC0qyUwtVkgrys9VyC1N0U1PLFZISSxJ5GFgTUvMKU7lhdLcDPJuriHOHrqpBfnxqcUFicmpeakl8e5ORqYWRkaWJo7GhFUAANccLlE</recordid><startdate>20200923</startdate><enddate>20200923</enddate><creator>Thibault Forest</creator><creator>Martin Niemann</creator><creator>Tao Yang</creator><creator>Knut Kristian Meisingset</creator><creator>Ibnu Hafidz Arief</creator><scope>EVB</scope></search><sort><creationdate>20200923</creationdate><title>Prediction of reservoir fluid properties from mud-gas data</title><author>Thibault Forest ; Martin Niemann ; Tao Yang ; Knut Kristian Meisingset ; Ibnu Hafidz Arief</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_GB2582294A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2020</creationdate><topic>DETECTING MASSES OR OBJECTS</topic><topic>EARTH DRILLING</topic><topic>EARTH DRILLING, e.g. DEEP DRILLING</topic><topic>FIXED CONSTRUCTIONS</topic><topic>GEOPHYSICS</topic><topic>GRAVITATIONAL MEASUREMENTS</topic><topic>MEASURING</topic><topic>MINING</topic><topic>OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR ASLURRY OF MINERALS FROM WELLS</topic><topic>PHYSICS</topic><topic>TESTING</topic><toplevel>online_resources</toplevel><creatorcontrib>Thibault Forest</creatorcontrib><creatorcontrib>Martin Niemann</creatorcontrib><creatorcontrib>Tao Yang</creatorcontrib><creatorcontrib>Knut Kristian Meisingset</creatorcontrib><creatorcontrib>Ibnu Hafidz Arief</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Thibault Forest</au><au>Martin Niemann</au><au>Tao Yang</au><au>Knut Kristian Meisingset</au><au>Ibnu Hafidz Arief</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Prediction of reservoir fluid properties from mud-gas data</title><date>2020-09-23</date><risdate>2020</risdate><abstract>A method of creating a model of a subterranean reservoir for predicting property of a fluid in a reservoir comprising selecting a subset of available reservoir samples based on a degree of biodegradation of the samples, generating an input data set 102 comprising input mud-gas data and fluid property data, and generating a model using a machine learning algorithm or correlation. The model can be used to predict the fluid properties for other sample locations based on mud-gas data for that location. The application of this technique allows a continuous log of the selected property to be generated using mud-gas data collected during the well drilling process.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_GB2582294A
source esp@cenet
subjects DETECTING MASSES OR OBJECTS
EARTH DRILLING
EARTH DRILLING, e.g. DEEP DRILLING
FIXED CONSTRUCTIONS
GEOPHYSICS
GRAVITATIONAL MEASUREMENTS
MEASURING
MINING
OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR ASLURRY OF MINERALS FROM WELLS
PHYSICS
TESTING
title Prediction of reservoir fluid properties from mud-gas data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T22%3A17%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Thibault%20Forest&rft.date=2020-09-23&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EGB2582294A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true