Defect detection and correction

Boundary detection for an object manufactured by 3D printing comprises receiving 21 an, IR or near-infrared, first image of a first layer of the object. A computer aided design (CAD) model representing the object is sliced 23 into slices, a slice corresponding to the first layer is selected 24 and o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Yuxing Cui
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Yuxing Cui
description Boundary detection for an object manufactured by 3D printing comprises receiving 21 an, IR or near-infrared, first image of a first layer of the object. A computer aided design (CAD) model representing the object is sliced 23 into slices, a slice corresponding to the first layer is selected 24 and output 25 as a second image having a border representing an edge of the object. The second image is correlated 26 with the first image and pixels in the first image corresponding to the border in the second image are identified 27 as representing the periphery. Pixels representing the boundary and outside the boundary may be removed 28 from the first image. A defect detection method in which the brightness of a pixel is compared to the average brightness of an image region may be applied to the first image. The AM method may be a powder bed manufacturing method such as electron beam melting or laser metal deposition. Also disclosed is a method of correcting a defect.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_GB2568536A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>GB2568536A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_GB2568536A3</originalsourceid><addsrcrecordid>eNrjZJB3SU1LTS5RSEktAVKZ-XkKiXkpCsn5RUUQLg8Da1piTnEqL5TmZpB3cw1x9tBNLciPTy0uSExOzUstiXd3MjI1szA1NnM0JqwCAJQHJA0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Defect detection and correction</title><source>esp@cenet</source><creator>Yuxing Cui</creator><creatorcontrib>Yuxing Cui</creatorcontrib><description>Boundary detection for an object manufactured by 3D printing comprises receiving 21 an, IR or near-infrared, first image of a first layer of the object. A computer aided design (CAD) model representing the object is sliced 23 into slices, a slice corresponding to the first layer is selected 24 and output 25 as a second image having a border representing an edge of the object. The second image is correlated 26 with the first image and pixels in the first image corresponding to the border in the second image are identified 27 as representing the periphery. Pixels representing the boundary and outside the boundary may be removed 28 from the first image. A defect detection method in which the brightness of a pixel is compared to the average brightness of an image region may be applied to the first image. The AM method may be a powder bed manufacturing method such as electron beam melting or laser metal deposition. Also disclosed is a method of correcting a defect.</description><language>eng</language><subject>ADDITIVE MANUFACTURING TECHNOLOGY ; ADDITIVE MANUFACTURING, i.e. MANUFACTURING OFTHREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVEAGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING,STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING ; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING ; CALCULATING ; COMPUTING ; COUNTING ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PERFORMING OPERATIONS ; PHYSICS ; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDEDFOR ; SHAPING OR JOINING OF PLASTICS ; TRANSPORTING ; WORKING OF PLASTICS ; WORKING OF SUBSTANCES IN A PLASTIC STATE, IN GENERAL</subject><creationdate>2019</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20190522&amp;DB=EPODOC&amp;CC=GB&amp;NR=2568536A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25563,76318</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20190522&amp;DB=EPODOC&amp;CC=GB&amp;NR=2568536A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Yuxing Cui</creatorcontrib><title>Defect detection and correction</title><description>Boundary detection for an object manufactured by 3D printing comprises receiving 21 an, IR or near-infrared, first image of a first layer of the object. A computer aided design (CAD) model representing the object is sliced 23 into slices, a slice corresponding to the first layer is selected 24 and output 25 as a second image having a border representing an edge of the object. The second image is correlated 26 with the first image and pixels in the first image corresponding to the border in the second image are identified 27 as representing the periphery. Pixels representing the boundary and outside the boundary may be removed 28 from the first image. A defect detection method in which the brightness of a pixel is compared to the average brightness of an image region may be applied to the first image. The AM method may be a powder bed manufacturing method such as electron beam melting or laser metal deposition. Also disclosed is a method of correcting a defect.</description><subject>ADDITIVE MANUFACTURING TECHNOLOGY</subject><subject>ADDITIVE MANUFACTURING, i.e. MANUFACTURING OFTHREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVEAGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING,STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING</subject><subject>AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING</subject><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PERFORMING OPERATIONS</subject><subject>PHYSICS</subject><subject>SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDEDFOR</subject><subject>SHAPING OR JOINING OF PLASTICS</subject><subject>TRANSPORTING</subject><subject>WORKING OF PLASTICS</subject><subject>WORKING OF SUBSTANCES IN A PLASTIC STATE, IN GENERAL</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2019</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZJB3SU1LTS5RSEktAVKZ-XkKiXkpCsn5RUUQLg8Da1piTnEqL5TmZpB3cw1x9tBNLciPTy0uSExOzUstiXd3MjI1szA1NnM0JqwCAJQHJA0</recordid><startdate>20190522</startdate><enddate>20190522</enddate><creator>Yuxing Cui</creator><scope>EVB</scope></search><sort><creationdate>20190522</creationdate><title>Defect detection and correction</title><author>Yuxing Cui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_GB2568536A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2019</creationdate><topic>ADDITIVE MANUFACTURING TECHNOLOGY</topic><topic>ADDITIVE MANUFACTURING, i.e. MANUFACTURING OFTHREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVEAGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING,STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING</topic><topic>AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING</topic><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PERFORMING OPERATIONS</topic><topic>PHYSICS</topic><topic>SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDEDFOR</topic><topic>SHAPING OR JOINING OF PLASTICS</topic><topic>TRANSPORTING</topic><topic>WORKING OF PLASTICS</topic><topic>WORKING OF SUBSTANCES IN A PLASTIC STATE, IN GENERAL</topic><toplevel>online_resources</toplevel><creatorcontrib>Yuxing Cui</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yuxing Cui</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Defect detection and correction</title><date>2019-05-22</date><risdate>2019</risdate><abstract>Boundary detection for an object manufactured by 3D printing comprises receiving 21 an, IR or near-infrared, first image of a first layer of the object. A computer aided design (CAD) model representing the object is sliced 23 into slices, a slice corresponding to the first layer is selected 24 and output 25 as a second image having a border representing an edge of the object. The second image is correlated 26 with the first image and pixels in the first image corresponding to the border in the second image are identified 27 as representing the periphery. Pixels representing the boundary and outside the boundary may be removed 28 from the first image. A defect detection method in which the brightness of a pixel is compared to the average brightness of an image region may be applied to the first image. The AM method may be a powder bed manufacturing method such as electron beam melting or laser metal deposition. Also disclosed is a method of correcting a defect.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_GB2568536A
source esp@cenet
subjects ADDITIVE MANUFACTURING TECHNOLOGY
ADDITIVE MANUFACTURING, i.e. MANUFACTURING OFTHREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVEAGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING,STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
CALCULATING
COMPUTING
COUNTING
IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
PERFORMING OPERATIONS
PHYSICS
SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDEDFOR
SHAPING OR JOINING OF PLASTICS
TRANSPORTING
WORKING OF PLASTICS
WORKING OF SUBSTANCES IN A PLASTIC STATE, IN GENERAL
title Defect detection and correction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T12%3A51%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Yuxing%20Cui&rft.date=2019-05-22&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EGB2568536A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true