Automatic signal processing-based learning in a process plant

Techniques for automatically or autonomously performing signal processing-based learning in a process plant are disclosed. Generally, said techniques automatically or autonomously perform signal processing on a real-time signal that is generated based on the process plant controlling a process. Typi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Terrence Lynn Blevins, John M Lucas, Paul Richard Muston, Mark John Nixon, Peter Zornio, Eric D Rotvold, Wilhelm K Wojsznis
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Terrence Lynn Blevins
John M Lucas
Paul Richard Muston
Mark John Nixon
Peter Zornio
Eric D Rotvold
Wilhelm K Wojsznis
description Techniques for automatically or autonomously performing signal processing-based learning in a process plant are disclosed. Generally, said techniques automatically or autonomously perform signal processing on a real-time signal that is generated based on the process plant controlling a process. Typically, the signal corresponds to a parameter value that varies over time, and the signal is processed as it is generated in real-time during on-line plant operations. Results of the signal processing may indicate characteristics of the signal, and one or more analytics functions may determine the sources of the characteristics, which may include a process element or device, a piece of equipment, and/or an asset of the process plant that is upstream, within the process, of the source of the signal. An autonomous signal processor may be integrated with or included in a process control device and/or a big data node of the process plant.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_GB2534628B</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>GB2534628B</sourcerecordid><originalsourceid>FETCH-epo_espacenet_GB2534628B3</originalsourceid><addsrcrecordid>eNrjZLB1LC3Jz00syUxWKM5Mz0vMUSgoyk9OLS7OzEvXTUosTk1RyElNLMoDchUy8xQSYdIKBTmJeSU8DKxpiTnFqbxQmptB3s01xNlDN7UgPz61uCAxOTUvtSTe3cnI1NjEzMjCyZiwCgByry9i</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Automatic signal processing-based learning in a process plant</title><source>esp@cenet</source><creator>Terrence Lynn Blevins ; John M Lucas ; Paul Richard Muston ; Mark John Nixon ; Peter Zornio ; Eric D Rotvold ; Wilhelm K Wojsznis</creator><creatorcontrib>Terrence Lynn Blevins ; John M Lucas ; Paul Richard Muston ; Mark John Nixon ; Peter Zornio ; Eric D Rotvold ; Wilhelm K Wojsznis</creatorcontrib><description>Techniques for automatically or autonomously performing signal processing-based learning in a process plant are disclosed. Generally, said techniques automatically or autonomously perform signal processing on a real-time signal that is generated based on the process plant controlling a process. Typically, the signal corresponds to a parameter value that varies over time, and the signal is processed as it is generated in real-time during on-line plant operations. Results of the signal processing may indicate characteristics of the signal, and one or more analytics functions may determine the sources of the characteristics, which may include a process element or device, a piece of equipment, and/or an asset of the process plant that is upstream, within the process, of the source of the signal. An autonomous signal processor may be integrated with or included in a process control device and/or a big data node of the process plant.</description><language>eng</language><subject>CONTROL OR REGULATING SYSTEMS IN GENERAL ; CONTROLLING ; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS ; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS ORELEMENTS ; PHYSICS ; REGULATING</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210519&amp;DB=EPODOC&amp;CC=GB&amp;NR=2534628B$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210519&amp;DB=EPODOC&amp;CC=GB&amp;NR=2534628B$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Terrence Lynn Blevins</creatorcontrib><creatorcontrib>John M Lucas</creatorcontrib><creatorcontrib>Paul Richard Muston</creatorcontrib><creatorcontrib>Mark John Nixon</creatorcontrib><creatorcontrib>Peter Zornio</creatorcontrib><creatorcontrib>Eric D Rotvold</creatorcontrib><creatorcontrib>Wilhelm K Wojsznis</creatorcontrib><title>Automatic signal processing-based learning in a process plant</title><description>Techniques for automatically or autonomously performing signal processing-based learning in a process plant are disclosed. Generally, said techniques automatically or autonomously perform signal processing on a real-time signal that is generated based on the process plant controlling a process. Typically, the signal corresponds to a parameter value that varies over time, and the signal is processed as it is generated in real-time during on-line plant operations. Results of the signal processing may indicate characteristics of the signal, and one or more analytics functions may determine the sources of the characteristics, which may include a process element or device, a piece of equipment, and/or an asset of the process plant that is upstream, within the process, of the source of the signal. An autonomous signal processor may be integrated with or included in a process control device and/or a big data node of the process plant.</description><subject>CONTROL OR REGULATING SYSTEMS IN GENERAL</subject><subject>CONTROLLING</subject><subject>FUNCTIONAL ELEMENTS OF SUCH SYSTEMS</subject><subject>MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS ORELEMENTS</subject><subject>PHYSICS</subject><subject>REGULATING</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZLB1LC3Jz00syUxWKM5Mz0vMUSgoyk9OLS7OzEvXTUosTk1RyElNLMoDchUy8xQSYdIKBTmJeSU8DKxpiTnFqbxQmptB3s01xNlDN7UgPz61uCAxOTUvtSTe3cnI1NjEzMjCyZiwCgByry9i</recordid><startdate>20210519</startdate><enddate>20210519</enddate><creator>Terrence Lynn Blevins</creator><creator>John M Lucas</creator><creator>Paul Richard Muston</creator><creator>Mark John Nixon</creator><creator>Peter Zornio</creator><creator>Eric D Rotvold</creator><creator>Wilhelm K Wojsznis</creator><scope>EVB</scope></search><sort><creationdate>20210519</creationdate><title>Automatic signal processing-based learning in a process plant</title><author>Terrence Lynn Blevins ; John M Lucas ; Paul Richard Muston ; Mark John Nixon ; Peter Zornio ; Eric D Rotvold ; Wilhelm K Wojsznis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_GB2534628B3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2021</creationdate><topic>CONTROL OR REGULATING SYSTEMS IN GENERAL</topic><topic>CONTROLLING</topic><topic>FUNCTIONAL ELEMENTS OF SUCH SYSTEMS</topic><topic>MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS ORELEMENTS</topic><topic>PHYSICS</topic><topic>REGULATING</topic><toplevel>online_resources</toplevel><creatorcontrib>Terrence Lynn Blevins</creatorcontrib><creatorcontrib>John M Lucas</creatorcontrib><creatorcontrib>Paul Richard Muston</creatorcontrib><creatorcontrib>Mark John Nixon</creatorcontrib><creatorcontrib>Peter Zornio</creatorcontrib><creatorcontrib>Eric D Rotvold</creatorcontrib><creatorcontrib>Wilhelm K Wojsznis</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Terrence Lynn Blevins</au><au>John M Lucas</au><au>Paul Richard Muston</au><au>Mark John Nixon</au><au>Peter Zornio</au><au>Eric D Rotvold</au><au>Wilhelm K Wojsznis</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Automatic signal processing-based learning in a process plant</title><date>2021-05-19</date><risdate>2021</risdate><abstract>Techniques for automatically or autonomously performing signal processing-based learning in a process plant are disclosed. Generally, said techniques automatically or autonomously perform signal processing on a real-time signal that is generated based on the process plant controlling a process. Typically, the signal corresponds to a parameter value that varies over time, and the signal is processed as it is generated in real-time during on-line plant operations. Results of the signal processing may indicate characteristics of the signal, and one or more analytics functions may determine the sources of the characteristics, which may include a process element or device, a piece of equipment, and/or an asset of the process plant that is upstream, within the process, of the source of the signal. An autonomous signal processor may be integrated with or included in a process control device and/or a big data node of the process plant.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_GB2534628B
source esp@cenet
subjects CONTROL OR REGULATING SYSTEMS IN GENERAL
CONTROLLING
FUNCTIONAL ELEMENTS OF SUCH SYSTEMS
MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS ORELEMENTS
PHYSICS
REGULATING
title Automatic signal processing-based learning in a process plant
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T02%3A18%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Terrence%20Lynn%20Blevins&rft.date=2021-05-19&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EGB2534628B%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true