Electronic pressure relief in a mechanically actuated fuel injector
A mechanically actuated electronically controlled fuel injector (10) includes a first electrical actuator (21) that controls the position of a spill valve (22), and a second electrical actuator (31) to control pressure on a closing hydraulic surface (34) associated with a nozzle check valve (32). Th...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | YONGXIANG LI DANA R COLDREN VICTOR I YACOUB |
description | A mechanically actuated electronically controlled fuel injector (10) includes a first electrical actuator (21) that controls the position of a spill valve (22), and a second electrical actuator (31) to control pressure on a closing hydraulic surface (34) associated with a nozzle check valve (32). The fuel injector (10) is actuated via rotation of a cam (9) to move a plunger (15) to displace fuel from a fuel pressurization chamber (17) either to a spill passage (20) or at high pressure out of a nozzle outlet (12) of the fuel injector (10) for an injection event. Pressure in the fuel injector (10) is moderated when the plunger (15) is moving and the nozzle check valve (32) is in a closed position by briefly cracking open the spill valve (22) to relieve some pressure during the dwell (D) between injection events, such as between a large main injection event (51) and a small close coupled post injection event (52). This strategy allows for longer dwell times between injection events as well as smaller injection quantities in the post-injection. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_GB2473974A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>GB2473974A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_GB2473974A3</originalsourceid><addsrcrecordid>eNrjZHB2zUlNLinKz8tMVigoSi0uLi1KVShKzclMTVPIzFNIVMhNTc5IBMom5uRUKiQml5QmlqSmKKSVpuYA5bOAevOLeBhY0xJzilN5oTQ3g7yba4izh25qQX58anFBYnJqXmpJvLuTkYm5saW5iaMxYRUAzSkxzQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Electronic pressure relief in a mechanically actuated fuel injector</title><source>esp@cenet</source><creator>YONGXIANG LI ; DANA R COLDREN ; VICTOR I YACOUB</creator><creatorcontrib>YONGXIANG LI ; DANA R COLDREN ; VICTOR I YACOUB</creatorcontrib><description>A mechanically actuated electronically controlled fuel injector (10) includes a first electrical actuator (21) that controls the position of a spill valve (22), and a second electrical actuator (31) to control pressure on a closing hydraulic surface (34) associated with a nozzle check valve (32). The fuel injector (10) is actuated via rotation of a cam (9) to move a plunger (15) to displace fuel from a fuel pressurization chamber (17) either to a spill passage (20) or at high pressure out of a nozzle outlet (12) of the fuel injector (10) for an injection event. Pressure in the fuel injector (10) is moderated when the plunger (15) is moving and the nozzle check valve (32) is in a closed position by briefly cracking open the spill valve (22) to relieve some pressure during the dwell (D) between injection events, such as between a large main injection event (51) and a small close coupled post injection event (52). This strategy allows for longer dwell times between injection events as well as smaller injection quantities in the post-injection.</description><language>eng</language><subject>BLASTING ; COMBUSTION ENGINES ; CONTROLLING COMBUSTION ENGINES ; HEATING ; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS ; LIGHTING ; MECHANICAL ENGINEERING ; SUPPLYING COMBUSTION ENGINES IN GENERAL, WITH COMBUSTIBLEMIXTURES OR CONSTITUENTS THEREOF ; WEAPONS</subject><creationdate>2011</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20110330&DB=EPODOC&CC=GB&NR=2473974A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25562,76317</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20110330&DB=EPODOC&CC=GB&NR=2473974A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>YONGXIANG LI</creatorcontrib><creatorcontrib>DANA R COLDREN</creatorcontrib><creatorcontrib>VICTOR I YACOUB</creatorcontrib><title>Electronic pressure relief in a mechanically actuated fuel injector</title><description>A mechanically actuated electronically controlled fuel injector (10) includes a first electrical actuator (21) that controls the position of a spill valve (22), and a second electrical actuator (31) to control pressure on a closing hydraulic surface (34) associated with a nozzle check valve (32). The fuel injector (10) is actuated via rotation of a cam (9) to move a plunger (15) to displace fuel from a fuel pressurization chamber (17) either to a spill passage (20) or at high pressure out of a nozzle outlet (12) of the fuel injector (10) for an injection event. Pressure in the fuel injector (10) is moderated when the plunger (15) is moving and the nozzle check valve (32) is in a closed position by briefly cracking open the spill valve (22) to relieve some pressure during the dwell (D) between injection events, such as between a large main injection event (51) and a small close coupled post injection event (52). This strategy allows for longer dwell times between injection events as well as smaller injection quantities in the post-injection.</description><subject>BLASTING</subject><subject>COMBUSTION ENGINES</subject><subject>CONTROLLING COMBUSTION ENGINES</subject><subject>HEATING</subject><subject>HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS</subject><subject>LIGHTING</subject><subject>MECHANICAL ENGINEERING</subject><subject>SUPPLYING COMBUSTION ENGINES IN GENERAL, WITH COMBUSTIBLEMIXTURES OR CONSTITUENTS THEREOF</subject><subject>WEAPONS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2011</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZHB2zUlNLinKz8tMVigoSi0uLi1KVShKzclMTVPIzFNIVMhNTc5IBMom5uRUKiQml5QmlqSmKKSVpuYA5bOAevOLeBhY0xJzilN5oTQ3g7yba4izh25qQX58anFBYnJqXmpJvLuTkYm5saW5iaMxYRUAzSkxzQ</recordid><startdate>20110330</startdate><enddate>20110330</enddate><creator>YONGXIANG LI</creator><creator>DANA R COLDREN</creator><creator>VICTOR I YACOUB</creator><scope>EVB</scope></search><sort><creationdate>20110330</creationdate><title>Electronic pressure relief in a mechanically actuated fuel injector</title><author>YONGXIANG LI ; DANA R COLDREN ; VICTOR I YACOUB</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_GB2473974A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2011</creationdate><topic>BLASTING</topic><topic>COMBUSTION ENGINES</topic><topic>CONTROLLING COMBUSTION ENGINES</topic><topic>HEATING</topic><topic>HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS</topic><topic>LIGHTING</topic><topic>MECHANICAL ENGINEERING</topic><topic>SUPPLYING COMBUSTION ENGINES IN GENERAL, WITH COMBUSTIBLEMIXTURES OR CONSTITUENTS THEREOF</topic><topic>WEAPONS</topic><toplevel>online_resources</toplevel><creatorcontrib>YONGXIANG LI</creatorcontrib><creatorcontrib>DANA R COLDREN</creatorcontrib><creatorcontrib>VICTOR I YACOUB</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>YONGXIANG LI</au><au>DANA R COLDREN</au><au>VICTOR I YACOUB</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Electronic pressure relief in a mechanically actuated fuel injector</title><date>2011-03-30</date><risdate>2011</risdate><abstract>A mechanically actuated electronically controlled fuel injector (10) includes a first electrical actuator (21) that controls the position of a spill valve (22), and a second electrical actuator (31) to control pressure on a closing hydraulic surface (34) associated with a nozzle check valve (32). The fuel injector (10) is actuated via rotation of a cam (9) to move a plunger (15) to displace fuel from a fuel pressurization chamber (17) either to a spill passage (20) or at high pressure out of a nozzle outlet (12) of the fuel injector (10) for an injection event. Pressure in the fuel injector (10) is moderated when the plunger (15) is moving and the nozzle check valve (32) is in a closed position by briefly cracking open the spill valve (22) to relieve some pressure during the dwell (D) between injection events, such as between a large main injection event (51) and a small close coupled post injection event (52). This strategy allows for longer dwell times between injection events as well as smaller injection quantities in the post-injection.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_GB2473974A |
source | esp@cenet |
subjects | BLASTING COMBUSTION ENGINES CONTROLLING COMBUSTION ENGINES HEATING HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS LIGHTING MECHANICAL ENGINEERING SUPPLYING COMBUSTION ENGINES IN GENERAL, WITH COMBUSTIBLEMIXTURES OR CONSTITUENTS THEREOF WEAPONS |
title | Electronic pressure relief in a mechanically actuated fuel injector |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T02%3A15%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=YONGXIANG%20LI&rft.date=2011-03-30&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EGB2473974A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |