Improvements related to the protection of reinforcement

A method of protecting steel in concrete is disclosed. It consists of connecting the steel (6) to a discrete sacrificial anode assembly (7) comprising a base metal (1), a relatively small quantity of catalytic activating agent in contact with the base metal and a substantially inert porous layer (3)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Gareth Kevin Glass
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Gareth Kevin Glass
description A method of protecting steel in concrete is disclosed. It consists of connecting the steel (6) to a discrete sacrificial anode assembly (7) comprising a base metal (1), a relatively small quantity of catalytic activating agent in contact with the base metal and a substantially inert porous layer (3) that surrounds the base metal and catalytic activating agent. The inert porous layer efficiently maintains a sustainable concentration gradient of the catalytic activating agent between the base metal and the surrounding environment as a result of the electric field across this layer. The preferred porous layer comprises a material that exhibits a net repulsion of negative ions from its pore system and the preferred catalytic activating agent comprises doubly charged sulphate ions as small electric fields maintain very high concentration gradients of these ions resulting in high concentrations at the base metal surface and insignificant concentrations at the assembly periphery.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_GB2427618B8</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>GB2427618B8</sourcerecordid><originalsourceid>FETCH-epo_espacenet_GB2427618B83</originalsourceid><addsrcrecordid>eNrjZDD3zC0oyi9LzU3NKylWKErNSSxJTVEoyVcoyUhVAMqUpCaXZObnKeSnASUz89Lyi5LBankYWNMSc4pTeaE0N4OCm2uIs4duakF-fGpxQWJyal5qSby7k5GJkbmZoYWThTERSgC6Wi4V</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Improvements related to the protection of reinforcement</title><source>esp@cenet</source><creator>Gareth Kevin Glass</creator><creatorcontrib>Gareth Kevin Glass</creatorcontrib><description>A method of protecting steel in concrete is disclosed. It consists of connecting the steel (6) to a discrete sacrificial anode assembly (7) comprising a base metal (1), a relatively small quantity of catalytic activating agent in contact with the base metal and a substantially inert porous layer (3) that surrounds the base metal and catalytic activating agent. The inert porous layer efficiently maintains a sustainable concentration gradient of the catalytic activating agent between the base metal and the surrounding environment as a result of the electric field across this layer. The preferred porous layer comprises a material that exhibits a net repulsion of negative ions from its pore system and the preferred catalytic activating agent comprises doubly charged sulphate ions as small electric fields maintain very high concentration gradients of these ions resulting in high concentrations at the base metal surface and insignificant concentrations at the assembly periphery.</description><language>eng</language><subject>CHEMICAL SURFACE TREATMENT ; CHEMISTRY ; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATIONOR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL ; COATING MATERIAL WITH METALLIC MATERIAL ; COATING METALLIC MATERIAL ; DIFFUSION TREATMENT OF METALLIC MATERIAL ; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION INGENERAL ; METALLURGY ; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLICMATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASSC23 AND AT LEAST ONEPROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25 ; NON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE</subject><creationdate>2019</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20190501&amp;DB=EPODOC&amp;CC=GB&amp;NR=2427618B8$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20190501&amp;DB=EPODOC&amp;CC=GB&amp;NR=2427618B8$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Gareth Kevin Glass</creatorcontrib><title>Improvements related to the protection of reinforcement</title><description>A method of protecting steel in concrete is disclosed. It consists of connecting the steel (6) to a discrete sacrificial anode assembly (7) comprising a base metal (1), a relatively small quantity of catalytic activating agent in contact with the base metal and a substantially inert porous layer (3) that surrounds the base metal and catalytic activating agent. The inert porous layer efficiently maintains a sustainable concentration gradient of the catalytic activating agent between the base metal and the surrounding environment as a result of the electric field across this layer. The preferred porous layer comprises a material that exhibits a net repulsion of negative ions from its pore system and the preferred catalytic activating agent comprises doubly charged sulphate ions as small electric fields maintain very high concentration gradients of these ions resulting in high concentrations at the base metal surface and insignificant concentrations at the assembly periphery.</description><subject>CHEMICAL SURFACE TREATMENT</subject><subject>CHEMISTRY</subject><subject>COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATIONOR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL</subject><subject>COATING MATERIAL WITH METALLIC MATERIAL</subject><subject>COATING METALLIC MATERIAL</subject><subject>DIFFUSION TREATMENT OF METALLIC MATERIAL</subject><subject>INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION INGENERAL</subject><subject>METALLURGY</subject><subject>MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLICMATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASSC23 AND AT LEAST ONEPROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25</subject><subject>NON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2019</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZDD3zC0oyi9LzU3NKylWKErNSSxJTVEoyVcoyUhVAMqUpCaXZObnKeSnASUz89Lyi5LBankYWNMSc4pTeaE0N4OCm2uIs4duakF-fGpxQWJyal5qSby7k5GJkbmZoYWThTERSgC6Wi4V</recordid><startdate>20190501</startdate><enddate>20190501</enddate><creator>Gareth Kevin Glass</creator><scope>EVB</scope></search><sort><creationdate>20190501</creationdate><title>Improvements related to the protection of reinforcement</title><author>Gareth Kevin Glass</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_GB2427618B83</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2019</creationdate><topic>CHEMICAL SURFACE TREATMENT</topic><topic>CHEMISTRY</topic><topic>COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATIONOR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL</topic><topic>COATING MATERIAL WITH METALLIC MATERIAL</topic><topic>COATING METALLIC MATERIAL</topic><topic>DIFFUSION TREATMENT OF METALLIC MATERIAL</topic><topic>INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION INGENERAL</topic><topic>METALLURGY</topic><topic>MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLICMATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASSC23 AND AT LEAST ONEPROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25</topic><topic>NON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE</topic><toplevel>online_resources</toplevel><creatorcontrib>Gareth Kevin Glass</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gareth Kevin Glass</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Improvements related to the protection of reinforcement</title><date>2019-05-01</date><risdate>2019</risdate><abstract>A method of protecting steel in concrete is disclosed. It consists of connecting the steel (6) to a discrete sacrificial anode assembly (7) comprising a base metal (1), a relatively small quantity of catalytic activating agent in contact with the base metal and a substantially inert porous layer (3) that surrounds the base metal and catalytic activating agent. The inert porous layer efficiently maintains a sustainable concentration gradient of the catalytic activating agent between the base metal and the surrounding environment as a result of the electric field across this layer. The preferred porous layer comprises a material that exhibits a net repulsion of negative ions from its pore system and the preferred catalytic activating agent comprises doubly charged sulphate ions as small electric fields maintain very high concentration gradients of these ions resulting in high concentrations at the base metal surface and insignificant concentrations at the assembly periphery.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_GB2427618B8
source esp@cenet
subjects CHEMICAL SURFACE TREATMENT
CHEMISTRY
COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATIONOR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
COATING MATERIAL WITH METALLIC MATERIAL
COATING METALLIC MATERIAL
DIFFUSION TREATMENT OF METALLIC MATERIAL
INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION INGENERAL
METALLURGY
MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLICMATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASSC23 AND AT LEAST ONEPROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
NON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE
title Improvements related to the protection of reinforcement
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T11%3A31%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Gareth%20Kevin%20Glass&rft.date=2019-05-01&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EGB2427618B8%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true