METHODS AND SYSTEMS FOR GRAPH ASSISTED UNSUPERVISED DOMAIN ADAPTATION FOR MACHINE FAULT DIAGNOSIS

The disclosure generally relates to methods and systems for graph assisted unsupervised domain adaptation for machine fault diagnosis. The present disclosure solves the technical problems in the art using a Graph Assisted Unsupervised Domain Adaptation (GA-UDA) technique for the machine fault diagno...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: PATTNAIK, Naibedya, CHANDRA MARISWAMY, Girish, KUMAR, Kriti, KUMAR ACHANNA, Anil
Format: Patent
Sprache:eng ; fre ; ger
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator PATTNAIK, Naibedya
CHANDRA MARISWAMY, Girish
KUMAR, Kriti
KUMAR ACHANNA, Anil
description The disclosure generally relates to methods and systems for graph assisted unsupervised domain adaptation for machine fault diagnosis. The present disclosure solves the technical problems in the art using a Graph Assisted Unsupervised Domain Adaptation (GA-UDA) technique for the machine fault diagnosis. The GA-UDA technique carries out the domain adaptation in two stages. In the first stage, a Class-wise maximum mean discrepancy (CMMD) loss is minimized to transform the data from both source and target domains to a shared feature space. In the second stage, the augmented transformed (projected) data from both the source and the target domains are utilized to construct a joint graph. Subsequently, the labels of target domain data are estimated through label propagation over the joint graph. The GA-UDA technique of the present disclosure helps in addressing significant distribution shift between the two domains.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_EP4488892A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EP4488892A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_EP4488892A13</originalsourceid><addsrcrecordid>eNqNizsKAjEURdNYiLqHtwELdYpYPibJJGA-5CUDVkOQWIkOjPvHIC7A6nAP96xZsTJpLwjQCaArJWkJlI8wRAwakMg0JyA7ykHG0VAbwls0DlBgSJiMd9_CYq-Nk6AwXxIIg4Pzrd6y1b08lrr7ccNAydTrfZ1fU13mcqvP-p5k6DrO-fmIh9Mflw9xEDOh</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>METHODS AND SYSTEMS FOR GRAPH ASSISTED UNSUPERVISED DOMAIN ADAPTATION FOR MACHINE FAULT DIAGNOSIS</title><source>esp@cenet</source><creator>PATTNAIK, Naibedya ; CHANDRA MARISWAMY, Girish ; KUMAR, Kriti ; KUMAR ACHANNA, Anil</creator><creatorcontrib>PATTNAIK, Naibedya ; CHANDRA MARISWAMY, Girish ; KUMAR, Kriti ; KUMAR ACHANNA, Anil</creatorcontrib><description>The disclosure generally relates to methods and systems for graph assisted unsupervised domain adaptation for machine fault diagnosis. The present disclosure solves the technical problems in the art using a Graph Assisted Unsupervised Domain Adaptation (GA-UDA) technique for the machine fault diagnosis. The GA-UDA technique carries out the domain adaptation in two stages. In the first stage, a Class-wise maximum mean discrepancy (CMMD) loss is minimized to transform the data from both source and target domains to a shared feature space. In the second stage, the augmented transformed (projected) data from both the source and the target domains are utilized to construct a joint graph. Subsequently, the labels of target domain data are estimated through label propagation over the joint graph. The GA-UDA technique of the present disclosure helps in addressing significant distribution shift between the two domains.</description><language>eng ; fre ; ger</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2025</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20250108&amp;DB=EPODOC&amp;CC=EP&amp;NR=4488892A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76289</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20250108&amp;DB=EPODOC&amp;CC=EP&amp;NR=4488892A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>PATTNAIK, Naibedya</creatorcontrib><creatorcontrib>CHANDRA MARISWAMY, Girish</creatorcontrib><creatorcontrib>KUMAR, Kriti</creatorcontrib><creatorcontrib>KUMAR ACHANNA, Anil</creatorcontrib><title>METHODS AND SYSTEMS FOR GRAPH ASSISTED UNSUPERVISED DOMAIN ADAPTATION FOR MACHINE FAULT DIAGNOSIS</title><description>The disclosure generally relates to methods and systems for graph assisted unsupervised domain adaptation for machine fault diagnosis. The present disclosure solves the technical problems in the art using a Graph Assisted Unsupervised Domain Adaptation (GA-UDA) technique for the machine fault diagnosis. The GA-UDA technique carries out the domain adaptation in two stages. In the first stage, a Class-wise maximum mean discrepancy (CMMD) loss is minimized to transform the data from both source and target domains to a shared feature space. In the second stage, the augmented transformed (projected) data from both the source and the target domains are utilized to construct a joint graph. Subsequently, the labels of target domain data are estimated through label propagation over the joint graph. The GA-UDA technique of the present disclosure helps in addressing significant distribution shift between the two domains.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2025</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNizsKAjEURdNYiLqHtwELdYpYPibJJGA-5CUDVkOQWIkOjPvHIC7A6nAP96xZsTJpLwjQCaArJWkJlI8wRAwakMg0JyA7ykHG0VAbwls0DlBgSJiMd9_CYq-Nk6AwXxIIg4Pzrd6y1b08lrr7ccNAydTrfZ1fU13mcqvP-p5k6DrO-fmIh9Mflw9xEDOh</recordid><startdate>20250108</startdate><enddate>20250108</enddate><creator>PATTNAIK, Naibedya</creator><creator>CHANDRA MARISWAMY, Girish</creator><creator>KUMAR, Kriti</creator><creator>KUMAR ACHANNA, Anil</creator><scope>EVB</scope></search><sort><creationdate>20250108</creationdate><title>METHODS AND SYSTEMS FOR GRAPH ASSISTED UNSUPERVISED DOMAIN ADAPTATION FOR MACHINE FAULT DIAGNOSIS</title><author>PATTNAIK, Naibedya ; CHANDRA MARISWAMY, Girish ; KUMAR, Kriti ; KUMAR ACHANNA, Anil</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_EP4488892A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng ; fre ; ger</language><creationdate>2025</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>PATTNAIK, Naibedya</creatorcontrib><creatorcontrib>CHANDRA MARISWAMY, Girish</creatorcontrib><creatorcontrib>KUMAR, Kriti</creatorcontrib><creatorcontrib>KUMAR ACHANNA, Anil</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>PATTNAIK, Naibedya</au><au>CHANDRA MARISWAMY, Girish</au><au>KUMAR, Kriti</au><au>KUMAR ACHANNA, Anil</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>METHODS AND SYSTEMS FOR GRAPH ASSISTED UNSUPERVISED DOMAIN ADAPTATION FOR MACHINE FAULT DIAGNOSIS</title><date>2025-01-08</date><risdate>2025</risdate><abstract>The disclosure generally relates to methods and systems for graph assisted unsupervised domain adaptation for machine fault diagnosis. The present disclosure solves the technical problems in the art using a Graph Assisted Unsupervised Domain Adaptation (GA-UDA) technique for the machine fault diagnosis. The GA-UDA technique carries out the domain adaptation in two stages. In the first stage, a Class-wise maximum mean discrepancy (CMMD) loss is minimized to transform the data from both source and target domains to a shared feature space. In the second stage, the augmented transformed (projected) data from both the source and the target domains are utilized to construct a joint graph. Subsequently, the labels of target domain data are estimated through label propagation over the joint graph. The GA-UDA technique of the present disclosure helps in addressing significant distribution shift between the two domains.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng ; fre ; ger
recordid cdi_epo_espacenet_EP4488892A1
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
PHYSICS
title METHODS AND SYSTEMS FOR GRAPH ASSISTED UNSUPERVISED DOMAIN ADAPTATION FOR MACHINE FAULT DIAGNOSIS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T00%3A24%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=PATTNAIK,%20Naibedya&rft.date=2025-01-08&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EEP4488892A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true