METHODS AND SYSTEMS FOR GRAPH ASSISTED UNSUPERVISED DOMAIN ADAPTATION FOR MACHINE FAULT DIAGNOSIS
The disclosure generally relates to methods and systems for graph assisted unsupervised domain adaptation for machine fault diagnosis. The present disclosure solves the technical problems in the art using a Graph Assisted Unsupervised Domain Adaptation (GA-UDA) technique for the machine fault diagno...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Patent |
Sprache: | eng ; fre ; ger |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | PATTNAIK, Naibedya CHANDRA MARISWAMY, Girish KUMAR, Kriti KUMAR ACHANNA, Anil |
description | The disclosure generally relates to methods and systems for graph assisted unsupervised domain adaptation for machine fault diagnosis. The present disclosure solves the technical problems in the art using a Graph Assisted Unsupervised Domain Adaptation (GA-UDA) technique for the machine fault diagnosis. The GA-UDA technique carries out the domain adaptation in two stages. In the first stage, a Class-wise maximum mean discrepancy (CMMD) loss is minimized to transform the data from both source and target domains to a shared feature space. In the second stage, the augmented transformed (projected) data from both the source and the target domains are utilized to construct a joint graph. Subsequently, the labels of target domain data are estimated through label propagation over the joint graph. The GA-UDA technique of the present disclosure helps in addressing significant distribution shift between the two domains. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_EP4488892A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EP4488892A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_EP4488892A13</originalsourceid><addsrcrecordid>eNqNizsKAjEURdNYiLqHtwELdYpYPibJJGA-5CUDVkOQWIkOjPvHIC7A6nAP96xZsTJpLwjQCaArJWkJlI8wRAwakMg0JyA7ykHG0VAbwls0DlBgSJiMd9_CYq-Nk6AwXxIIg4Pzrd6y1b08lrr7ccNAydTrfZ1fU13mcqvP-p5k6DrO-fmIh9Mflw9xEDOh</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>METHODS AND SYSTEMS FOR GRAPH ASSISTED UNSUPERVISED DOMAIN ADAPTATION FOR MACHINE FAULT DIAGNOSIS</title><source>esp@cenet</source><creator>PATTNAIK, Naibedya ; CHANDRA MARISWAMY, Girish ; KUMAR, Kriti ; KUMAR ACHANNA, Anil</creator><creatorcontrib>PATTNAIK, Naibedya ; CHANDRA MARISWAMY, Girish ; KUMAR, Kriti ; KUMAR ACHANNA, Anil</creatorcontrib><description>The disclosure generally relates to methods and systems for graph assisted unsupervised domain adaptation for machine fault diagnosis. The present disclosure solves the technical problems in the art using a Graph Assisted Unsupervised Domain Adaptation (GA-UDA) technique for the machine fault diagnosis. The GA-UDA technique carries out the domain adaptation in two stages. In the first stage, a Class-wise maximum mean discrepancy (CMMD) loss is minimized to transform the data from both source and target domains to a shared feature space. In the second stage, the augmented transformed (projected) data from both the source and the target domains are utilized to construct a joint graph. Subsequently, the labels of target domain data are estimated through label propagation over the joint graph. The GA-UDA technique of the present disclosure helps in addressing significant distribution shift between the two domains.</description><language>eng ; fre ; ger</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2025</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20250108&DB=EPODOC&CC=EP&NR=4488892A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76289</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20250108&DB=EPODOC&CC=EP&NR=4488892A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>PATTNAIK, Naibedya</creatorcontrib><creatorcontrib>CHANDRA MARISWAMY, Girish</creatorcontrib><creatorcontrib>KUMAR, Kriti</creatorcontrib><creatorcontrib>KUMAR ACHANNA, Anil</creatorcontrib><title>METHODS AND SYSTEMS FOR GRAPH ASSISTED UNSUPERVISED DOMAIN ADAPTATION FOR MACHINE FAULT DIAGNOSIS</title><description>The disclosure generally relates to methods and systems for graph assisted unsupervised domain adaptation for machine fault diagnosis. The present disclosure solves the technical problems in the art using a Graph Assisted Unsupervised Domain Adaptation (GA-UDA) technique for the machine fault diagnosis. The GA-UDA technique carries out the domain adaptation in two stages. In the first stage, a Class-wise maximum mean discrepancy (CMMD) loss is minimized to transform the data from both source and target domains to a shared feature space. In the second stage, the augmented transformed (projected) data from both the source and the target domains are utilized to construct a joint graph. Subsequently, the labels of target domain data are estimated through label propagation over the joint graph. The GA-UDA technique of the present disclosure helps in addressing significant distribution shift between the two domains.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2025</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNizsKAjEURdNYiLqHtwELdYpYPibJJGA-5CUDVkOQWIkOjPvHIC7A6nAP96xZsTJpLwjQCaArJWkJlI8wRAwakMg0JyA7ykHG0VAbwls0DlBgSJiMd9_CYq-Nk6AwXxIIg4Pzrd6y1b08lrr7ccNAydTrfZ1fU13mcqvP-p5k6DrO-fmIh9Mflw9xEDOh</recordid><startdate>20250108</startdate><enddate>20250108</enddate><creator>PATTNAIK, Naibedya</creator><creator>CHANDRA MARISWAMY, Girish</creator><creator>KUMAR, Kriti</creator><creator>KUMAR ACHANNA, Anil</creator><scope>EVB</scope></search><sort><creationdate>20250108</creationdate><title>METHODS AND SYSTEMS FOR GRAPH ASSISTED UNSUPERVISED DOMAIN ADAPTATION FOR MACHINE FAULT DIAGNOSIS</title><author>PATTNAIK, Naibedya ; CHANDRA MARISWAMY, Girish ; KUMAR, Kriti ; KUMAR ACHANNA, Anil</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_EP4488892A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng ; fre ; ger</language><creationdate>2025</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>PATTNAIK, Naibedya</creatorcontrib><creatorcontrib>CHANDRA MARISWAMY, Girish</creatorcontrib><creatorcontrib>KUMAR, Kriti</creatorcontrib><creatorcontrib>KUMAR ACHANNA, Anil</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>PATTNAIK, Naibedya</au><au>CHANDRA MARISWAMY, Girish</au><au>KUMAR, Kriti</au><au>KUMAR ACHANNA, Anil</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>METHODS AND SYSTEMS FOR GRAPH ASSISTED UNSUPERVISED DOMAIN ADAPTATION FOR MACHINE FAULT DIAGNOSIS</title><date>2025-01-08</date><risdate>2025</risdate><abstract>The disclosure generally relates to methods and systems for graph assisted unsupervised domain adaptation for machine fault diagnosis. The present disclosure solves the technical problems in the art using a Graph Assisted Unsupervised Domain Adaptation (GA-UDA) technique for the machine fault diagnosis. The GA-UDA technique carries out the domain adaptation in two stages. In the first stage, a Class-wise maximum mean discrepancy (CMMD) loss is minimized to transform the data from both source and target domains to a shared feature space. In the second stage, the augmented transformed (projected) data from both the source and the target domains are utilized to construct a joint graph. Subsequently, the labels of target domain data are estimated through label propagation over the joint graph. The GA-UDA technique of the present disclosure helps in addressing significant distribution shift between the two domains.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng ; fre ; ger |
recordid | cdi_epo_espacenet_EP4488892A1 |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING PHYSICS |
title | METHODS AND SYSTEMS FOR GRAPH ASSISTED UNSUPERVISED DOMAIN ADAPTATION FOR MACHINE FAULT DIAGNOSIS |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T00%3A24%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=PATTNAIK,%20Naibedya&rft.date=2025-01-08&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EEP4488892A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |