PREDICTING FRAUDULENT TRANSACTIONS
A computer implemented method of training a model, using a machine learning process, to predict whether a transaction of a digital currency stored in a blockchain is fraudulent, comprises: unpacking (202) a block in the blockchain into a table comprising one or more rows of input and output data for...
Gespeichert in:
Hauptverfasser: | , , , , , , |
---|---|
Format: | Patent |
Sprache: | eng ; fre ; ger |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | TANEJA, Mohit KOTHALE, Nitish HOLLAND, Shannon CONWAY, James FLINTER, Stephen Patrick NICHOLLS, Jack MORAN, Weston |
description | A computer implemented method of training a model, using a machine learning process, to predict whether a transaction of a digital currency stored in a blockchain is fraudulent, comprises: unpacking (202) a block in the blockchain into a table comprising one or more rows of input and output data for a previous transaction stored in the block and aggregating (204) the one or more rows of input and output data to form an aggregated row of transaction data for the previous transaction. The method further comprises labelling (206) the aggregated row of transaction data for the previous transaction according to whether the previous transaction was fraudulent and using (208) the aggregated row of transaction data and the label as training data with which to train the model. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_EP4481654A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EP4481654A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_EP4481654A13</originalsourceid><addsrcrecordid>eNrjZFAKCHJ18XQO8fRzV3ALcgx1CfVx9QtRCAly9At2BAr7-wXzMLCmJeYUp_JCaW4GBTfXEGcP3dSC_PjU4oLE5NS81JJ41wATEwtDM1MTR0NjIpQAABlxIm0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>PREDICTING FRAUDULENT TRANSACTIONS</title><source>esp@cenet</source><creator>TANEJA, Mohit ; KOTHALE, Nitish ; HOLLAND, Shannon ; CONWAY, James ; FLINTER, Stephen Patrick ; NICHOLLS, Jack ; MORAN, Weston</creator><creatorcontrib>TANEJA, Mohit ; KOTHALE, Nitish ; HOLLAND, Shannon ; CONWAY, James ; FLINTER, Stephen Patrick ; NICHOLLS, Jack ; MORAN, Weston</creatorcontrib><description>A computer implemented method of training a model, using a machine learning process, to predict whether a transaction of a digital currency stored in a blockchain is fraudulent, comprises: unpacking (202) a block in the blockchain into a table comprising one or more rows of input and output data for a previous transaction stored in the block and aggregating (204) the one or more rows of input and output data to form an aggregated row of transaction data for the previous transaction. The method further comprises labelling (206) the aggregated row of transaction data for the previous transaction according to whether the previous transaction was fraudulent and using (208) the aggregated row of transaction data and the label as training data with which to train the model.</description><language>eng ; fre ; ger</language><subject>CALCULATING ; COMPUTING ; COUNTING ; DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ; PHYSICS ; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20241225&DB=EPODOC&CC=EP&NR=4481654A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25562,76317</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20241225&DB=EPODOC&CC=EP&NR=4481654A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>TANEJA, Mohit</creatorcontrib><creatorcontrib>KOTHALE, Nitish</creatorcontrib><creatorcontrib>HOLLAND, Shannon</creatorcontrib><creatorcontrib>CONWAY, James</creatorcontrib><creatorcontrib>FLINTER, Stephen Patrick</creatorcontrib><creatorcontrib>NICHOLLS, Jack</creatorcontrib><creatorcontrib>MORAN, Weston</creatorcontrib><title>PREDICTING FRAUDULENT TRANSACTIONS</title><description>A computer implemented method of training a model, using a machine learning process, to predict whether a transaction of a digital currency stored in a blockchain is fraudulent, comprises: unpacking (202) a block in the blockchain into a table comprising one or more rows of input and output data for a previous transaction stored in the block and aggregating (204) the one or more rows of input and output data to form an aggregated row of transaction data for the previous transaction. The method further comprises labelling (206) the aggregated row of transaction data for the previous transaction according to whether the previous transaction was fraudulent and using (208) the aggregated row of transaction data and the label as training data with which to train the model.</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</subject><subject>PHYSICS</subject><subject>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZFAKCHJ18XQO8fRzV3ALcgx1CfVx9QtRCAly9At2BAr7-wXzMLCmJeYUp_JCaW4GBTfXEGcP3dSC_PjU4oLE5NS81JJ41wATEwtDM1MTR0NjIpQAABlxIm0</recordid><startdate>20241225</startdate><enddate>20241225</enddate><creator>TANEJA, Mohit</creator><creator>KOTHALE, Nitish</creator><creator>HOLLAND, Shannon</creator><creator>CONWAY, James</creator><creator>FLINTER, Stephen Patrick</creator><creator>NICHOLLS, Jack</creator><creator>MORAN, Weston</creator><scope>EVB</scope></search><sort><creationdate>20241225</creationdate><title>PREDICTING FRAUDULENT TRANSACTIONS</title><author>TANEJA, Mohit ; KOTHALE, Nitish ; HOLLAND, Shannon ; CONWAY, James ; FLINTER, Stephen Patrick ; NICHOLLS, Jack ; MORAN, Weston</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_EP4481654A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng ; fre ; ger</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</topic><topic>PHYSICS</topic><topic>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</topic><toplevel>online_resources</toplevel><creatorcontrib>TANEJA, Mohit</creatorcontrib><creatorcontrib>KOTHALE, Nitish</creatorcontrib><creatorcontrib>HOLLAND, Shannon</creatorcontrib><creatorcontrib>CONWAY, James</creatorcontrib><creatorcontrib>FLINTER, Stephen Patrick</creatorcontrib><creatorcontrib>NICHOLLS, Jack</creatorcontrib><creatorcontrib>MORAN, Weston</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>TANEJA, Mohit</au><au>KOTHALE, Nitish</au><au>HOLLAND, Shannon</au><au>CONWAY, James</au><au>FLINTER, Stephen Patrick</au><au>NICHOLLS, Jack</au><au>MORAN, Weston</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>PREDICTING FRAUDULENT TRANSACTIONS</title><date>2024-12-25</date><risdate>2024</risdate><abstract>A computer implemented method of training a model, using a machine learning process, to predict whether a transaction of a digital currency stored in a blockchain is fraudulent, comprises: unpacking (202) a block in the blockchain into a table comprising one or more rows of input and output data for a previous transaction stored in the block and aggregating (204) the one or more rows of input and output data to form an aggregated row of transaction data for the previous transaction. The method further comprises labelling (206) the aggregated row of transaction data for the previous transaction according to whether the previous transaction was fraudulent and using (208) the aggregated row of transaction data and the label as training data with which to train the model.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng ; fre ; ger |
recordid | cdi_epo_espacenet_EP4481654A1 |
source | esp@cenet |
subjects | CALCULATING COMPUTING COUNTING DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES PHYSICS SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR |
title | PREDICTING FRAUDULENT TRANSACTIONS |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T08%3A10%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=TANEJA,%20Mohit&rft.date=2024-12-25&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EEP4481654A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |