PREDICTING FRAUDULENT TRANSACTIONS

A computer implemented method of training a model, using a machine learning process, to predict whether a transaction of a digital currency stored in a blockchain is fraudulent, comprises: unpacking (202) a block in the blockchain into a table comprising one or more rows of input and output data for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: TANEJA, Mohit, KOTHALE, Nitish, HOLLAND, Shannon, CONWAY, James, FLINTER, Stephen Patrick, NICHOLLS, Jack, MORAN, Weston
Format: Patent
Sprache:eng ; fre ; ger
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator TANEJA, Mohit
KOTHALE, Nitish
HOLLAND, Shannon
CONWAY, James
FLINTER, Stephen Patrick
NICHOLLS, Jack
MORAN, Weston
description A computer implemented method of training a model, using a machine learning process, to predict whether a transaction of a digital currency stored in a blockchain is fraudulent, comprises: unpacking (202) a block in the blockchain into a table comprising one or more rows of input and output data for a previous transaction stored in the block and aggregating (204) the one or more rows of input and output data to form an aggregated row of transaction data for the previous transaction. The method further comprises labelling (206) the aggregated row of transaction data for the previous transaction according to whether the previous transaction was fraudulent and using (208) the aggregated row of transaction data and the label as training data with which to train the model.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_EP4481654A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EP4481654A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_EP4481654A13</originalsourceid><addsrcrecordid>eNrjZFAKCHJ18XQO8fRzV3ALcgx1CfVx9QtRCAly9At2BAr7-wXzMLCmJeYUp_JCaW4GBTfXEGcP3dSC_PjU4oLE5NS81JJ41wATEwtDM1MTR0NjIpQAABlxIm0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>PREDICTING FRAUDULENT TRANSACTIONS</title><source>esp@cenet</source><creator>TANEJA, Mohit ; KOTHALE, Nitish ; HOLLAND, Shannon ; CONWAY, James ; FLINTER, Stephen Patrick ; NICHOLLS, Jack ; MORAN, Weston</creator><creatorcontrib>TANEJA, Mohit ; KOTHALE, Nitish ; HOLLAND, Shannon ; CONWAY, James ; FLINTER, Stephen Patrick ; NICHOLLS, Jack ; MORAN, Weston</creatorcontrib><description>A computer implemented method of training a model, using a machine learning process, to predict whether a transaction of a digital currency stored in a blockchain is fraudulent, comprises: unpacking (202) a block in the blockchain into a table comprising one or more rows of input and output data for a previous transaction stored in the block and aggregating (204) the one or more rows of input and output data to form an aggregated row of transaction data for the previous transaction. The method further comprises labelling (206) the aggregated row of transaction data for the previous transaction according to whether the previous transaction was fraudulent and using (208) the aggregated row of transaction data and the label as training data with which to train the model.</description><language>eng ; fre ; ger</language><subject>CALCULATING ; COMPUTING ; COUNTING ; DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ; PHYSICS ; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20241225&amp;DB=EPODOC&amp;CC=EP&amp;NR=4481654A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25562,76317</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20241225&amp;DB=EPODOC&amp;CC=EP&amp;NR=4481654A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>TANEJA, Mohit</creatorcontrib><creatorcontrib>KOTHALE, Nitish</creatorcontrib><creatorcontrib>HOLLAND, Shannon</creatorcontrib><creatorcontrib>CONWAY, James</creatorcontrib><creatorcontrib>FLINTER, Stephen Patrick</creatorcontrib><creatorcontrib>NICHOLLS, Jack</creatorcontrib><creatorcontrib>MORAN, Weston</creatorcontrib><title>PREDICTING FRAUDULENT TRANSACTIONS</title><description>A computer implemented method of training a model, using a machine learning process, to predict whether a transaction of a digital currency stored in a blockchain is fraudulent, comprises: unpacking (202) a block in the blockchain into a table comprising one or more rows of input and output data for a previous transaction stored in the block and aggregating (204) the one or more rows of input and output data to form an aggregated row of transaction data for the previous transaction. The method further comprises labelling (206) the aggregated row of transaction data for the previous transaction according to whether the previous transaction was fraudulent and using (208) the aggregated row of transaction data and the label as training data with which to train the model.</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</subject><subject>PHYSICS</subject><subject>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZFAKCHJ18XQO8fRzV3ALcgx1CfVx9QtRCAly9At2BAr7-wXzMLCmJeYUp_JCaW4GBTfXEGcP3dSC_PjU4oLE5NS81JJ41wATEwtDM1MTR0NjIpQAABlxIm0</recordid><startdate>20241225</startdate><enddate>20241225</enddate><creator>TANEJA, Mohit</creator><creator>KOTHALE, Nitish</creator><creator>HOLLAND, Shannon</creator><creator>CONWAY, James</creator><creator>FLINTER, Stephen Patrick</creator><creator>NICHOLLS, Jack</creator><creator>MORAN, Weston</creator><scope>EVB</scope></search><sort><creationdate>20241225</creationdate><title>PREDICTING FRAUDULENT TRANSACTIONS</title><author>TANEJA, Mohit ; KOTHALE, Nitish ; HOLLAND, Shannon ; CONWAY, James ; FLINTER, Stephen Patrick ; NICHOLLS, Jack ; MORAN, Weston</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_EP4481654A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng ; fre ; ger</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</topic><topic>PHYSICS</topic><topic>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</topic><toplevel>online_resources</toplevel><creatorcontrib>TANEJA, Mohit</creatorcontrib><creatorcontrib>KOTHALE, Nitish</creatorcontrib><creatorcontrib>HOLLAND, Shannon</creatorcontrib><creatorcontrib>CONWAY, James</creatorcontrib><creatorcontrib>FLINTER, Stephen Patrick</creatorcontrib><creatorcontrib>NICHOLLS, Jack</creatorcontrib><creatorcontrib>MORAN, Weston</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>TANEJA, Mohit</au><au>KOTHALE, Nitish</au><au>HOLLAND, Shannon</au><au>CONWAY, James</au><au>FLINTER, Stephen Patrick</au><au>NICHOLLS, Jack</au><au>MORAN, Weston</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>PREDICTING FRAUDULENT TRANSACTIONS</title><date>2024-12-25</date><risdate>2024</risdate><abstract>A computer implemented method of training a model, using a machine learning process, to predict whether a transaction of a digital currency stored in a blockchain is fraudulent, comprises: unpacking (202) a block in the blockchain into a table comprising one or more rows of input and output data for a previous transaction stored in the block and aggregating (204) the one or more rows of input and output data to form an aggregated row of transaction data for the previous transaction. The method further comprises labelling (206) the aggregated row of transaction data for the previous transaction according to whether the previous transaction was fraudulent and using (208) the aggregated row of transaction data and the label as training data with which to train the model.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng ; fre ; ger
recordid cdi_epo_espacenet_EP4481654A1
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES
PHYSICS
SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR
title PREDICTING FRAUDULENT TRANSACTIONS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T08%3A10%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=TANEJA,%20Mohit&rft.date=2024-12-25&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EEP4481654A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true