SCENE-AGNOSTIC REGRESSION ON PIXEL-LEVEL ANNOTATIONS

A computer-implemented method of training a machine learning model for regression on pixel-level annotations in images is disclosed. The method comprises pre-training an image encoder and a decoder for cross-view completion, constructing training tuples, each comprising a first image, associated wit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Cabon, Yohann, Brégier, Romain, Revaud, Jérôme, Weinzaepfel, Philippe
Format: Patent
Sprache:eng ; fre ; ger
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Cabon, Yohann
Brégier, Romain
Revaud, Jérôme
Weinzaepfel, Philippe
description A computer-implemented method of training a machine learning model for regression on pixel-level annotations in images is disclosed. The method comprises pre-training an image encoder and a decoder for cross-view completion, constructing training tuples, each comprising a first image, associated with dense pixel-level annotations, and one or more second images, each associated with sparse pixel-level annotations. The image encoder generates first image tokens and second image tokens from the first and second images. A feature mixer generates sets of augmented second image tokens by augmenting the second image tokens with the associated sparse pixel-level annotations. The method further comprises processing, by the decoder, the first image tokens and the augmented second image tokens to generate prediction data for the first image, the prediction data comprising dense pixel-level predictions, and fine-tuning the machine learning model based on the prediction data and the dense pixel-level annotations.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_EP4471663A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EP4471663A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_EP4471663A13</originalsourceid><addsrcrecordid>eNrjZDAJdnb1c9V1dPfzDw7xdFYIcnUPcg0O9vT3UwCiAM8IVx9dH9cwVx8FRz8__xDHEKBMMA8Da1piTnEqL5TmZlBwcw1x9tBNLciPTy0uSExOzUstiXcNMDExNzQzM3Y0NCZCCQCW3ydH</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>SCENE-AGNOSTIC REGRESSION ON PIXEL-LEVEL ANNOTATIONS</title><source>esp@cenet</source><creator>Cabon, Yohann ; Brégier, Romain ; Revaud, Jérôme ; Weinzaepfel, Philippe</creator><creatorcontrib>Cabon, Yohann ; Brégier, Romain ; Revaud, Jérôme ; Weinzaepfel, Philippe</creatorcontrib><description>A computer-implemented method of training a machine learning model for regression on pixel-level annotations in images is disclosed. The method comprises pre-training an image encoder and a decoder for cross-view completion, constructing training tuples, each comprising a first image, associated with dense pixel-level annotations, and one or more second images, each associated with sparse pixel-level annotations. The image encoder generates first image tokens and second image tokens from the first and second images. A feature mixer generates sets of augmented second image tokens by augmenting the second image tokens with the associated sparse pixel-level annotations. The method further comprises processing, by the decoder, the first image tokens and the augmented second image tokens to generate prediction data for the first image, the prediction data comprising dense pixel-level predictions, and fine-tuning the machine learning model based on the prediction data and the dense pixel-level annotations.</description><language>eng ; fre ; ger</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20241204&amp;DB=EPODOC&amp;CC=EP&amp;NR=4471663A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,778,883,25547,76298</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20241204&amp;DB=EPODOC&amp;CC=EP&amp;NR=4471663A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Cabon, Yohann</creatorcontrib><creatorcontrib>Brégier, Romain</creatorcontrib><creatorcontrib>Revaud, Jérôme</creatorcontrib><creatorcontrib>Weinzaepfel, Philippe</creatorcontrib><title>SCENE-AGNOSTIC REGRESSION ON PIXEL-LEVEL ANNOTATIONS</title><description>A computer-implemented method of training a machine learning model for regression on pixel-level annotations in images is disclosed. The method comprises pre-training an image encoder and a decoder for cross-view completion, constructing training tuples, each comprising a first image, associated with dense pixel-level annotations, and one or more second images, each associated with sparse pixel-level annotations. The image encoder generates first image tokens and second image tokens from the first and second images. A feature mixer generates sets of augmented second image tokens by augmenting the second image tokens with the associated sparse pixel-level annotations. The method further comprises processing, by the decoder, the first image tokens and the augmented second image tokens to generate prediction data for the first image, the prediction data comprising dense pixel-level predictions, and fine-tuning the machine learning model based on the prediction data and the dense pixel-level annotations.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZDAJdnb1c9V1dPfzDw7xdFYIcnUPcg0O9vT3UwCiAM8IVx9dH9cwVx8FRz8__xDHEKBMMA8Da1piTnEqL5TmZlBwcw1x9tBNLciPTy0uSExOzUstiXcNMDExNzQzM3Y0NCZCCQCW3ydH</recordid><startdate>20241204</startdate><enddate>20241204</enddate><creator>Cabon, Yohann</creator><creator>Brégier, Romain</creator><creator>Revaud, Jérôme</creator><creator>Weinzaepfel, Philippe</creator><scope>EVB</scope></search><sort><creationdate>20241204</creationdate><title>SCENE-AGNOSTIC REGRESSION ON PIXEL-LEVEL ANNOTATIONS</title><author>Cabon, Yohann ; Brégier, Romain ; Revaud, Jérôme ; Weinzaepfel, Philippe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_EP4471663A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng ; fre ; ger</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Cabon, Yohann</creatorcontrib><creatorcontrib>Brégier, Romain</creatorcontrib><creatorcontrib>Revaud, Jérôme</creatorcontrib><creatorcontrib>Weinzaepfel, Philippe</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cabon, Yohann</au><au>Brégier, Romain</au><au>Revaud, Jérôme</au><au>Weinzaepfel, Philippe</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>SCENE-AGNOSTIC REGRESSION ON PIXEL-LEVEL ANNOTATIONS</title><date>2024-12-04</date><risdate>2024</risdate><abstract>A computer-implemented method of training a machine learning model for regression on pixel-level annotations in images is disclosed. The method comprises pre-training an image encoder and a decoder for cross-view completion, constructing training tuples, each comprising a first image, associated with dense pixel-level annotations, and one or more second images, each associated with sparse pixel-level annotations. The image encoder generates first image tokens and second image tokens from the first and second images. A feature mixer generates sets of augmented second image tokens by augmenting the second image tokens with the associated sparse pixel-level annotations. The method further comprises processing, by the decoder, the first image tokens and the augmented second image tokens to generate prediction data for the first image, the prediction data comprising dense pixel-level predictions, and fine-tuning the machine learning model based on the prediction data and the dense pixel-level annotations.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng ; fre ; ger
recordid cdi_epo_espacenet_EP4471663A1
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
PHYSICS
title SCENE-AGNOSTIC REGRESSION ON PIXEL-LEVEL ANNOTATIONS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T15%3A24%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Cabon,%20Yohann&rft.date=2024-12-04&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EEP4471663A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true