EXPOSURE STRATEGY AT SCANNING FIELD BORDERS
The invention relates to a method for generating a control data set for an energy input device of an additive manufacturing device which is designed to produce an object by applying a construction material layer by layer and by solidifying the construction material in a construction area (8) by mean...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Patent |
Sprache: | eng ; fre ; ger |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | TENBRINK, Stephan GRÜNBERGER, Stefan |
description | The invention relates to a method for generating a control data set for an energy input device of an additive manufacturing device which is designed to produce an object by applying a construction material layer by layer and by solidifying the construction material in a construction area (8) by means of the energy input device. The method has the following steps: a first step (S1) of accessing computer-based model data of an object cross-section of the object to be produced; a second step (S2) of generating a data model of a construction material layer region to be solidified in order to produce the object cross-section, wherein the region to be solidified is separated into a plurality of sub-regions (8a, 8b), at least one first sub-region (8a) and a second sub-region (8b) adjoin each other at a border (8ab), and points in the first sub-region (8a) are scanned in a timed manner with respect to points in the second sub-region (8b); and a third step (S3), in which the control data set for the energy input device is generated while taking into consideration the data model generated in the second step. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_EP4463306A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EP4463306A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_EP4463306A13</originalsourceid><addsrcrecordid>eNrjZNB2jQjwDw4NclUIDglyDHF1j1RwDFEIdnb08_P0c1dw83T1cVFw8g9ycQ0K5mFgTUvMKU7lhdLcDApuriHOHrqpBfnxqcUFicmpeakl8a4BJiZmxsYGZo6GxkQoAQA7ZSSX</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>EXPOSURE STRATEGY AT SCANNING FIELD BORDERS</title><source>esp@cenet</source><creator>TENBRINK, Stephan ; GRÜNBERGER, Stefan</creator><creatorcontrib>TENBRINK, Stephan ; GRÜNBERGER, Stefan</creatorcontrib><description>The invention relates to a method for generating a control data set for an energy input device of an additive manufacturing device which is designed to produce an object by applying a construction material layer by layer and by solidifying the construction material in a construction area (8) by means of the energy input device. The method has the following steps: a first step (S1) of accessing computer-based model data of an object cross-section of the object to be produced; a second step (S2) of generating a data model of a construction material layer region to be solidified in order to produce the object cross-section, wherein the region to be solidified is separated into a plurality of sub-regions (8a, 8b), at least one first sub-region (8a) and a second sub-region (8b) adjoin each other at a border (8ab), and points in the first sub-region (8a) are scanned in a timed manner with respect to points in the second sub-region (8b); and a third step (S3), in which the control data set for the energy input device is generated while taking into consideration the data model generated in the second step.</description><language>eng ; fre ; ger</language><subject>ADDITIVE MANUFACTURING TECHNOLOGY ; ADDITIVE MANUFACTURING, i.e. MANUFACTURING OFTHREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVEAGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING,STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING ; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING ; CASTING ; MAKING METALLIC POWDER ; MANUFACTURE OF ARTICLES FROM METALLIC POWDER ; PERFORMING OPERATIONS ; POWDER METALLURGY ; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDEDFOR ; SHAPING OR JOINING OF PLASTICS ; TRANSPORTING ; WORKING METALLIC POWDER ; WORKING OF PLASTICS ; WORKING OF SUBSTANCES IN A PLASTIC STATE, IN GENERAL</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20241120&DB=EPODOC&CC=EP&NR=4463306A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20241120&DB=EPODOC&CC=EP&NR=4463306A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>TENBRINK, Stephan</creatorcontrib><creatorcontrib>GRÜNBERGER, Stefan</creatorcontrib><title>EXPOSURE STRATEGY AT SCANNING FIELD BORDERS</title><description>The invention relates to a method for generating a control data set for an energy input device of an additive manufacturing device which is designed to produce an object by applying a construction material layer by layer and by solidifying the construction material in a construction area (8) by means of the energy input device. The method has the following steps: a first step (S1) of accessing computer-based model data of an object cross-section of the object to be produced; a second step (S2) of generating a data model of a construction material layer region to be solidified in order to produce the object cross-section, wherein the region to be solidified is separated into a plurality of sub-regions (8a, 8b), at least one first sub-region (8a) and a second sub-region (8b) adjoin each other at a border (8ab), and points in the first sub-region (8a) are scanned in a timed manner with respect to points in the second sub-region (8b); and a third step (S3), in which the control data set for the energy input device is generated while taking into consideration the data model generated in the second step.</description><subject>ADDITIVE MANUFACTURING TECHNOLOGY</subject><subject>ADDITIVE MANUFACTURING, i.e. MANUFACTURING OFTHREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVEAGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING,STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING</subject><subject>AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING</subject><subject>CASTING</subject><subject>MAKING METALLIC POWDER</subject><subject>MANUFACTURE OF ARTICLES FROM METALLIC POWDER</subject><subject>PERFORMING OPERATIONS</subject><subject>POWDER METALLURGY</subject><subject>SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDEDFOR</subject><subject>SHAPING OR JOINING OF PLASTICS</subject><subject>TRANSPORTING</subject><subject>WORKING METALLIC POWDER</subject><subject>WORKING OF PLASTICS</subject><subject>WORKING OF SUBSTANCES IN A PLASTIC STATE, IN GENERAL</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZNB2jQjwDw4NclUIDglyDHF1j1RwDFEIdnb08_P0c1dw83T1cVFw8g9ycQ0K5mFgTUvMKU7lhdLcDApuriHOHrqpBfnxqcUFicmpeakl8a4BJiZmxsYGZo6GxkQoAQA7ZSSX</recordid><startdate>20241120</startdate><enddate>20241120</enddate><creator>TENBRINK, Stephan</creator><creator>GRÜNBERGER, Stefan</creator><scope>EVB</scope></search><sort><creationdate>20241120</creationdate><title>EXPOSURE STRATEGY AT SCANNING FIELD BORDERS</title><author>TENBRINK, Stephan ; GRÜNBERGER, Stefan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_EP4463306A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng ; fre ; ger</language><creationdate>2024</creationdate><topic>ADDITIVE MANUFACTURING TECHNOLOGY</topic><topic>ADDITIVE MANUFACTURING, i.e. MANUFACTURING OFTHREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVEAGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING,STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING</topic><topic>AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING</topic><topic>CASTING</topic><topic>MAKING METALLIC POWDER</topic><topic>MANUFACTURE OF ARTICLES FROM METALLIC POWDER</topic><topic>PERFORMING OPERATIONS</topic><topic>POWDER METALLURGY</topic><topic>SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDEDFOR</topic><topic>SHAPING OR JOINING OF PLASTICS</topic><topic>TRANSPORTING</topic><topic>WORKING METALLIC POWDER</topic><topic>WORKING OF PLASTICS</topic><topic>WORKING OF SUBSTANCES IN A PLASTIC STATE, IN GENERAL</topic><toplevel>online_resources</toplevel><creatorcontrib>TENBRINK, Stephan</creatorcontrib><creatorcontrib>GRÜNBERGER, Stefan</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>TENBRINK, Stephan</au><au>GRÜNBERGER, Stefan</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>EXPOSURE STRATEGY AT SCANNING FIELD BORDERS</title><date>2024-11-20</date><risdate>2024</risdate><abstract>The invention relates to a method for generating a control data set for an energy input device of an additive manufacturing device which is designed to produce an object by applying a construction material layer by layer and by solidifying the construction material in a construction area (8) by means of the energy input device. The method has the following steps: a first step (S1) of accessing computer-based model data of an object cross-section of the object to be produced; a second step (S2) of generating a data model of a construction material layer region to be solidified in order to produce the object cross-section, wherein the region to be solidified is separated into a plurality of sub-regions (8a, 8b), at least one first sub-region (8a) and a second sub-region (8b) adjoin each other at a border (8ab), and points in the first sub-region (8a) are scanned in a timed manner with respect to points in the second sub-region (8b); and a third step (S3), in which the control data set for the energy input device is generated while taking into consideration the data model generated in the second step.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng ; fre ; ger |
recordid | cdi_epo_espacenet_EP4463306A1 |
source | esp@cenet |
subjects | ADDITIVE MANUFACTURING TECHNOLOGY ADDITIVE MANUFACTURING, i.e. MANUFACTURING OFTHREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVEAGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING,STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING CASTING MAKING METALLIC POWDER MANUFACTURE OF ARTICLES FROM METALLIC POWDER PERFORMING OPERATIONS POWDER METALLURGY SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDEDFOR SHAPING OR JOINING OF PLASTICS TRANSPORTING WORKING METALLIC POWDER WORKING OF PLASTICS WORKING OF SUBSTANCES IN A PLASTIC STATE, IN GENERAL |
title | EXPOSURE STRATEGY AT SCANNING FIELD BORDERS |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T23%3A28%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=TENBRINK,%20Stephan&rft.date=2024-11-20&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EEP4463306A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |