TRAINED MODEL GENERATION SYSTEM, TRAINED MODEL GENERATION METHOD, INFORMATION PROCESSING DEVICE, PROGRAM, TRAINED MODEL, AND ESTIMATION DEVICE
A trained model generation system that generates a trained model includes: an estimation unit configured to perform estimation on learning data; a loss gradient calculating unit configured to calculate a gradient of loss for a result of estimation from the estimation unit; and an optimizer unit conf...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Patent |
Sprache: | eng ; fre ; ger |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | SAWADA, Tomoya |
description | A trained model generation system that generates a trained model includes: an estimation unit configured to perform estimation on learning data; a loss gradient calculating unit configured to calculate a gradient of loss for a result of estimation from the estimation unit; and an optimizer unit configured to calculate a plurality of parameters constituting the trained model on the basis of the gradient of loss. The optimizer unit uses an expression including a first factor of which an absolute value becomes greater than 1 to achieve an effect of increasing a learning rate when learning stagnates and in which the effect of increasing the learning rate when the learning stagnates increases as the number of epochs increases as an expression for calculating the learning rate used to calculate the plurality of parameters. Accordingly, it is possible to enable learning to exit from a state in which the learning stagnates. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_EP4443344A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EP4443344A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_EP4443344A13</originalsourceid><addsrcrecordid>eNqNjEEKwjAQRbNxIeod5gBxIckFQjJNB8ykJEFwVYrElWihnsMzi7QrQXD14fHeX4tXSYYYHYTo8AgeGZMpFBnyORcMEn4KAUsbnQTiJqYwsy5FizkTe3B4Iovyg3wy30cSDDvAXGgpZ30rVtfhNtXdshsBDRbb7uv46Os0Dpd6r88eO621Ulqbg_pDeQM_9T9e</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>TRAINED MODEL GENERATION SYSTEM, TRAINED MODEL GENERATION METHOD, INFORMATION PROCESSING DEVICE, PROGRAM, TRAINED MODEL, AND ESTIMATION DEVICE</title><source>esp@cenet</source><creator>SAWADA, Tomoya</creator><creatorcontrib>SAWADA, Tomoya</creatorcontrib><description>A trained model generation system that generates a trained model includes: an estimation unit configured to perform estimation on learning data; a loss gradient calculating unit configured to calculate a gradient of loss for a result of estimation from the estimation unit; and an optimizer unit configured to calculate a plurality of parameters constituting the trained model on the basis of the gradient of loss. The optimizer unit uses an expression including a first factor of which an absolute value becomes greater than 1 to achieve an effect of increasing a learning rate when learning stagnates and in which the effect of increasing the learning rate when the learning stagnates increases as the number of epochs increases as an expression for calculating the learning rate used to calculate the plurality of parameters. Accordingly, it is possible to enable learning to exit from a state in which the learning stagnates.</description><language>eng ; fre ; ger</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20241009&DB=EPODOC&CC=EP&NR=4443344A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25543,76293</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20241009&DB=EPODOC&CC=EP&NR=4443344A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>SAWADA, Tomoya</creatorcontrib><title>TRAINED MODEL GENERATION SYSTEM, TRAINED MODEL GENERATION METHOD, INFORMATION PROCESSING DEVICE, PROGRAM, TRAINED MODEL, AND ESTIMATION DEVICE</title><description>A trained model generation system that generates a trained model includes: an estimation unit configured to perform estimation on learning data; a loss gradient calculating unit configured to calculate a gradient of loss for a result of estimation from the estimation unit; and an optimizer unit configured to calculate a plurality of parameters constituting the trained model on the basis of the gradient of loss. The optimizer unit uses an expression including a first factor of which an absolute value becomes greater than 1 to achieve an effect of increasing a learning rate when learning stagnates and in which the effect of increasing the learning rate when the learning stagnates increases as the number of epochs increases as an expression for calculating the learning rate used to calculate the plurality of parameters. Accordingly, it is possible to enable learning to exit from a state in which the learning stagnates.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjEEKwjAQRbNxIeod5gBxIckFQjJNB8ykJEFwVYrElWihnsMzi7QrQXD14fHeX4tXSYYYHYTo8AgeGZMpFBnyORcMEn4KAUsbnQTiJqYwsy5FizkTe3B4Iovyg3wy30cSDDvAXGgpZ30rVtfhNtXdshsBDRbb7uv46Os0Dpd6r88eO621Ulqbg_pDeQM_9T9e</recordid><startdate>20241009</startdate><enddate>20241009</enddate><creator>SAWADA, Tomoya</creator><scope>EVB</scope></search><sort><creationdate>20241009</creationdate><title>TRAINED MODEL GENERATION SYSTEM, TRAINED MODEL GENERATION METHOD, INFORMATION PROCESSING DEVICE, PROGRAM, TRAINED MODEL, AND ESTIMATION DEVICE</title><author>SAWADA, Tomoya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_EP4443344A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng ; fre ; ger</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>SAWADA, Tomoya</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>SAWADA, Tomoya</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>TRAINED MODEL GENERATION SYSTEM, TRAINED MODEL GENERATION METHOD, INFORMATION PROCESSING DEVICE, PROGRAM, TRAINED MODEL, AND ESTIMATION DEVICE</title><date>2024-10-09</date><risdate>2024</risdate><abstract>A trained model generation system that generates a trained model includes: an estimation unit configured to perform estimation on learning data; a loss gradient calculating unit configured to calculate a gradient of loss for a result of estimation from the estimation unit; and an optimizer unit configured to calculate a plurality of parameters constituting the trained model on the basis of the gradient of loss. The optimizer unit uses an expression including a first factor of which an absolute value becomes greater than 1 to achieve an effect of increasing a learning rate when learning stagnates and in which the effect of increasing the learning rate when the learning stagnates increases as the number of epochs increases as an expression for calculating the learning rate used to calculate the plurality of parameters. Accordingly, it is possible to enable learning to exit from a state in which the learning stagnates.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng ; fre ; ger |
recordid | cdi_epo_espacenet_EP4443344A1 |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING PHYSICS |
title | TRAINED MODEL GENERATION SYSTEM, TRAINED MODEL GENERATION METHOD, INFORMATION PROCESSING DEVICE, PROGRAM, TRAINED MODEL, AND ESTIMATION DEVICE |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T16%3A39%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=SAWADA,%20Tomoya&rft.date=2024-10-09&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EEP4443344A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |