TRAINED MODEL GENERATION SYSTEM, TRAINED MODEL GENERATION METHOD, INFORMATION PROCESSING DEVICE, PROGRAM, TRAINED MODEL, AND ESTIMATION DEVICE

A trained model generation system that generates a trained model includes: an estimation unit configured to perform estimation on learning data; a loss gradient calculating unit configured to calculate a gradient of loss for a result of estimation from the estimation unit; and an optimizer unit conf...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: SAWADA, Tomoya
Format: Patent
Sprache:eng ; fre ; ger
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator SAWADA, Tomoya
description A trained model generation system that generates a trained model includes: an estimation unit configured to perform estimation on learning data; a loss gradient calculating unit configured to calculate a gradient of loss for a result of estimation from the estimation unit; and an optimizer unit configured to calculate a plurality of parameters constituting the trained model on the basis of the gradient of loss. The optimizer unit uses an expression including a first factor of which an absolute value becomes greater than 1 to achieve an effect of increasing a learning rate when learning stagnates and in which the effect of increasing the learning rate when the learning stagnates increases as the number of epochs increases as an expression for calculating the learning rate used to calculate the plurality of parameters. Accordingly, it is possible to enable learning to exit from a state in which the learning stagnates.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_EP4443344A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EP4443344A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_EP4443344A13</originalsourceid><addsrcrecordid>eNqNjEEKwjAQRbNxIeod5gBxIckFQjJNB8ykJEFwVYrElWihnsMzi7QrQXD14fHeX4tXSYYYHYTo8AgeGZMpFBnyORcMEn4KAUsbnQTiJqYwsy5FizkTe3B4Iovyg3wy30cSDDvAXGgpZ30rVtfhNtXdshsBDRbb7uv46Os0Dpd6r88eO621Ulqbg_pDeQM_9T9e</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>TRAINED MODEL GENERATION SYSTEM, TRAINED MODEL GENERATION METHOD, INFORMATION PROCESSING DEVICE, PROGRAM, TRAINED MODEL, AND ESTIMATION DEVICE</title><source>esp@cenet</source><creator>SAWADA, Tomoya</creator><creatorcontrib>SAWADA, Tomoya</creatorcontrib><description>A trained model generation system that generates a trained model includes: an estimation unit configured to perform estimation on learning data; a loss gradient calculating unit configured to calculate a gradient of loss for a result of estimation from the estimation unit; and an optimizer unit configured to calculate a plurality of parameters constituting the trained model on the basis of the gradient of loss. The optimizer unit uses an expression including a first factor of which an absolute value becomes greater than 1 to achieve an effect of increasing a learning rate when learning stagnates and in which the effect of increasing the learning rate when the learning stagnates increases as the number of epochs increases as an expression for calculating the learning rate used to calculate the plurality of parameters. Accordingly, it is possible to enable learning to exit from a state in which the learning stagnates.</description><language>eng ; fre ; ger</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20241009&amp;DB=EPODOC&amp;CC=EP&amp;NR=4443344A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25543,76293</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20241009&amp;DB=EPODOC&amp;CC=EP&amp;NR=4443344A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>SAWADA, Tomoya</creatorcontrib><title>TRAINED MODEL GENERATION SYSTEM, TRAINED MODEL GENERATION METHOD, INFORMATION PROCESSING DEVICE, PROGRAM, TRAINED MODEL, AND ESTIMATION DEVICE</title><description>A trained model generation system that generates a trained model includes: an estimation unit configured to perform estimation on learning data; a loss gradient calculating unit configured to calculate a gradient of loss for a result of estimation from the estimation unit; and an optimizer unit configured to calculate a plurality of parameters constituting the trained model on the basis of the gradient of loss. The optimizer unit uses an expression including a first factor of which an absolute value becomes greater than 1 to achieve an effect of increasing a learning rate when learning stagnates and in which the effect of increasing the learning rate when the learning stagnates increases as the number of epochs increases as an expression for calculating the learning rate used to calculate the plurality of parameters. Accordingly, it is possible to enable learning to exit from a state in which the learning stagnates.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjEEKwjAQRbNxIeod5gBxIckFQjJNB8ykJEFwVYrElWihnsMzi7QrQXD14fHeX4tXSYYYHYTo8AgeGZMpFBnyORcMEn4KAUsbnQTiJqYwsy5FizkTe3B4Iovyg3wy30cSDDvAXGgpZ30rVtfhNtXdshsBDRbb7uv46Os0Dpd6r88eO621Ulqbg_pDeQM_9T9e</recordid><startdate>20241009</startdate><enddate>20241009</enddate><creator>SAWADA, Tomoya</creator><scope>EVB</scope></search><sort><creationdate>20241009</creationdate><title>TRAINED MODEL GENERATION SYSTEM, TRAINED MODEL GENERATION METHOD, INFORMATION PROCESSING DEVICE, PROGRAM, TRAINED MODEL, AND ESTIMATION DEVICE</title><author>SAWADA, Tomoya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_EP4443344A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng ; fre ; ger</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>SAWADA, Tomoya</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>SAWADA, Tomoya</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>TRAINED MODEL GENERATION SYSTEM, TRAINED MODEL GENERATION METHOD, INFORMATION PROCESSING DEVICE, PROGRAM, TRAINED MODEL, AND ESTIMATION DEVICE</title><date>2024-10-09</date><risdate>2024</risdate><abstract>A trained model generation system that generates a trained model includes: an estimation unit configured to perform estimation on learning data; a loss gradient calculating unit configured to calculate a gradient of loss for a result of estimation from the estimation unit; and an optimizer unit configured to calculate a plurality of parameters constituting the trained model on the basis of the gradient of loss. The optimizer unit uses an expression including a first factor of which an absolute value becomes greater than 1 to achieve an effect of increasing a learning rate when learning stagnates and in which the effect of increasing the learning rate when the learning stagnates increases as the number of epochs increases as an expression for calculating the learning rate used to calculate the plurality of parameters. Accordingly, it is possible to enable learning to exit from a state in which the learning stagnates.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng ; fre ; ger
recordid cdi_epo_espacenet_EP4443344A1
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
PHYSICS
title TRAINED MODEL GENERATION SYSTEM, TRAINED MODEL GENERATION METHOD, INFORMATION PROCESSING DEVICE, PROGRAM, TRAINED MODEL, AND ESTIMATION DEVICE
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T16%3A39%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=SAWADA,%20Tomoya&rft.date=2024-10-09&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EEP4443344A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true