SYNTHETIC POSITIVE IMAGE GENERATION FOR FINE GRAIN IMAGE SIMILARITY BASED APPAREL SEARCH
In apparel search context, process of finding a similar item out of thousands of other items is a cumbersome and computationally heavy process. In order to build a deep learning model that can perform the similarity search, hundreds of training images per Stock Keeping Unit (SKU) are required. Due t...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Patent |
Sprache: | eng ; fre ; ger |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | SELVARAJ, ARAVIND MUKHERJEE, JAYANTA PATI, BISWANATH DAS, RAHUL |
description | In apparel search context, process of finding a similar item out of thousands of other items is a cumbersome and computationally heavy process. In order to build a deep learning model that can perform the similarity search, hundreds of training images per Stock Keeping Unit (SKU) are required. Due to shortage of training data, this approach fails to generate a deep learning model that can perform the similarity search in intended manner. The existing approaches may also require domain experts to perform classification of apparels, so as to generate the training data. The method and system disclosed herein provide an approach in which positive images and negative images are generated from each query image, which in turn are used for generating a training data. The training data is then used to generate a deep learning model, which is used to perform the similarity search. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_EP4432122A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EP4432122A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_EP4432122A13</originalsourceid><addsrcrecordid>eNqNikEKwjAQAHPxIOof9gMemvYDa7ppFtokJIvYUykST6KF-n_00Ad4GpiZvbrl0YsjYQMxZBa-EvCAHUFHnhIKBw82JLDsfy4h-61nHrjHxDLCBTO1gDFioh4yYTLuqHaP-bmW08aDAkti3Lks76msy3wvr_KZKDZNrSutsar_WL6NYzCm</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>SYNTHETIC POSITIVE IMAGE GENERATION FOR FINE GRAIN IMAGE SIMILARITY BASED APPAREL SEARCH</title><source>esp@cenet</source><creator>SELVARAJ, ARAVIND ; MUKHERJEE, JAYANTA ; PATI, BISWANATH ; DAS, RAHUL</creator><creatorcontrib>SELVARAJ, ARAVIND ; MUKHERJEE, JAYANTA ; PATI, BISWANATH ; DAS, RAHUL</creatorcontrib><description>In apparel search context, process of finding a similar item out of thousands of other items is a cumbersome and computationally heavy process. In order to build a deep learning model that can perform the similarity search, hundreds of training images per Stock Keeping Unit (SKU) are required. Due to shortage of training data, this approach fails to generate a deep learning model that can perform the similarity search in intended manner. The existing approaches may also require domain experts to perform classification of apparels, so as to generate the training data. The method and system disclosed herein provide an approach in which positive images and negative images are generated from each query image, which in turn are used for generating a training data. The training data is then used to generate a deep learning model, which is used to perform the similarity search.</description><language>eng ; fre ; ger</language><subject>CALCULATING ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240918&DB=EPODOC&CC=EP&NR=4432122A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25543,76293</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240918&DB=EPODOC&CC=EP&NR=4432122A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>SELVARAJ, ARAVIND</creatorcontrib><creatorcontrib>MUKHERJEE, JAYANTA</creatorcontrib><creatorcontrib>PATI, BISWANATH</creatorcontrib><creatorcontrib>DAS, RAHUL</creatorcontrib><title>SYNTHETIC POSITIVE IMAGE GENERATION FOR FINE GRAIN IMAGE SIMILARITY BASED APPAREL SEARCH</title><description>In apparel search context, process of finding a similar item out of thousands of other items is a cumbersome and computationally heavy process. In order to build a deep learning model that can perform the similarity search, hundreds of training images per Stock Keeping Unit (SKU) are required. Due to shortage of training data, this approach fails to generate a deep learning model that can perform the similarity search in intended manner. The existing approaches may also require domain experts to perform classification of apparels, so as to generate the training data. The method and system disclosed herein provide an approach in which positive images and negative images are generated from each query image, which in turn are used for generating a training data. The training data is then used to generate a deep learning model, which is used to perform the similarity search.</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNikEKwjAQAHPxIOof9gMemvYDa7ppFtokJIvYUykST6KF-n_00Ad4GpiZvbrl0YsjYQMxZBa-EvCAHUFHnhIKBw82JLDsfy4h-61nHrjHxDLCBTO1gDFioh4yYTLuqHaP-bmW08aDAkti3Lks76msy3wvr_KZKDZNrSutsar_WL6NYzCm</recordid><startdate>20240918</startdate><enddate>20240918</enddate><creator>SELVARAJ, ARAVIND</creator><creator>MUKHERJEE, JAYANTA</creator><creator>PATI, BISWANATH</creator><creator>DAS, RAHUL</creator><scope>EVB</scope></search><sort><creationdate>20240918</creationdate><title>SYNTHETIC POSITIVE IMAGE GENERATION FOR FINE GRAIN IMAGE SIMILARITY BASED APPAREL SEARCH</title><author>SELVARAJ, ARAVIND ; MUKHERJEE, JAYANTA ; PATI, BISWANATH ; DAS, RAHUL</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_EP4432122A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng ; fre ; ger</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>SELVARAJ, ARAVIND</creatorcontrib><creatorcontrib>MUKHERJEE, JAYANTA</creatorcontrib><creatorcontrib>PATI, BISWANATH</creatorcontrib><creatorcontrib>DAS, RAHUL</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>SELVARAJ, ARAVIND</au><au>MUKHERJEE, JAYANTA</au><au>PATI, BISWANATH</au><au>DAS, RAHUL</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>SYNTHETIC POSITIVE IMAGE GENERATION FOR FINE GRAIN IMAGE SIMILARITY BASED APPAREL SEARCH</title><date>2024-09-18</date><risdate>2024</risdate><abstract>In apparel search context, process of finding a similar item out of thousands of other items is a cumbersome and computationally heavy process. In order to build a deep learning model that can perform the similarity search, hundreds of training images per Stock Keeping Unit (SKU) are required. Due to shortage of training data, this approach fails to generate a deep learning model that can perform the similarity search in intended manner. The existing approaches may also require domain experts to perform classification of apparels, so as to generate the training data. The method and system disclosed herein provide an approach in which positive images and negative images are generated from each query image, which in turn are used for generating a training data. The training data is then used to generate a deep learning model, which is used to perform the similarity search.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng ; fre ; ger |
recordid | cdi_epo_espacenet_EP4432122A1 |
source | esp@cenet |
subjects | CALCULATING COMPUTING COUNTING ELECTRIC DIGITAL DATA PROCESSING PHYSICS |
title | SYNTHETIC POSITIVE IMAGE GENERATION FOR FINE GRAIN IMAGE SIMILARITY BASED APPAREL SEARCH |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T23%3A48%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=SELVARAJ,%20ARAVIND&rft.date=2024-09-18&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EEP4432122A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |