SYNTHETIC POSITIVE IMAGE GENERATION FOR FINE GRAIN IMAGE SIMILARITY BASED APPAREL SEARCH

In apparel search context, process of finding a similar item out of thousands of other items is a cumbersome and computationally heavy process. In order to build a deep learning model that can perform the similarity search, hundreds of training images per Stock Keeping Unit (SKU) are required. Due t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: SELVARAJ, ARAVIND, MUKHERJEE, JAYANTA, PATI, BISWANATH, DAS, RAHUL
Format: Patent
Sprache:eng ; fre ; ger
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator SELVARAJ, ARAVIND
MUKHERJEE, JAYANTA
PATI, BISWANATH
DAS, RAHUL
description In apparel search context, process of finding a similar item out of thousands of other items is a cumbersome and computationally heavy process. In order to build a deep learning model that can perform the similarity search, hundreds of training images per Stock Keeping Unit (SKU) are required. Due to shortage of training data, this approach fails to generate a deep learning model that can perform the similarity search in intended manner. The existing approaches may also require domain experts to perform classification of apparels, so as to generate the training data. The method and system disclosed herein provide an approach in which positive images and negative images are generated from each query image, which in turn are used for generating a training data. The training data is then used to generate a deep learning model, which is used to perform the similarity search.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_EP4432122A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EP4432122A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_EP4432122A13</originalsourceid><addsrcrecordid>eNqNikEKwjAQAHPxIOof9gMemvYDa7ppFtokJIvYUykST6KF-n_00Ad4GpiZvbrl0YsjYQMxZBa-EvCAHUFHnhIKBw82JLDsfy4h-61nHrjHxDLCBTO1gDFioh4yYTLuqHaP-bmW08aDAkti3Lks76msy3wvr_KZKDZNrSutsar_WL6NYzCm</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>SYNTHETIC POSITIVE IMAGE GENERATION FOR FINE GRAIN IMAGE SIMILARITY BASED APPAREL SEARCH</title><source>esp@cenet</source><creator>SELVARAJ, ARAVIND ; MUKHERJEE, JAYANTA ; PATI, BISWANATH ; DAS, RAHUL</creator><creatorcontrib>SELVARAJ, ARAVIND ; MUKHERJEE, JAYANTA ; PATI, BISWANATH ; DAS, RAHUL</creatorcontrib><description>In apparel search context, process of finding a similar item out of thousands of other items is a cumbersome and computationally heavy process. In order to build a deep learning model that can perform the similarity search, hundreds of training images per Stock Keeping Unit (SKU) are required. Due to shortage of training data, this approach fails to generate a deep learning model that can perform the similarity search in intended manner. The existing approaches may also require domain experts to perform classification of apparels, so as to generate the training data. The method and system disclosed herein provide an approach in which positive images and negative images are generated from each query image, which in turn are used for generating a training data. The training data is then used to generate a deep learning model, which is used to perform the similarity search.</description><language>eng ; fre ; ger</language><subject>CALCULATING ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240918&amp;DB=EPODOC&amp;CC=EP&amp;NR=4432122A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25543,76293</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240918&amp;DB=EPODOC&amp;CC=EP&amp;NR=4432122A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>SELVARAJ, ARAVIND</creatorcontrib><creatorcontrib>MUKHERJEE, JAYANTA</creatorcontrib><creatorcontrib>PATI, BISWANATH</creatorcontrib><creatorcontrib>DAS, RAHUL</creatorcontrib><title>SYNTHETIC POSITIVE IMAGE GENERATION FOR FINE GRAIN IMAGE SIMILARITY BASED APPAREL SEARCH</title><description>In apparel search context, process of finding a similar item out of thousands of other items is a cumbersome and computationally heavy process. In order to build a deep learning model that can perform the similarity search, hundreds of training images per Stock Keeping Unit (SKU) are required. Due to shortage of training data, this approach fails to generate a deep learning model that can perform the similarity search in intended manner. The existing approaches may also require domain experts to perform classification of apparels, so as to generate the training data. The method and system disclosed herein provide an approach in which positive images and negative images are generated from each query image, which in turn are used for generating a training data. The training data is then used to generate a deep learning model, which is used to perform the similarity search.</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNikEKwjAQAHPxIOof9gMemvYDa7ppFtokJIvYUykST6KF-n_00Ad4GpiZvbrl0YsjYQMxZBa-EvCAHUFHnhIKBw82JLDsfy4h-61nHrjHxDLCBTO1gDFioh4yYTLuqHaP-bmW08aDAkti3Lks76msy3wvr_KZKDZNrSutsar_WL6NYzCm</recordid><startdate>20240918</startdate><enddate>20240918</enddate><creator>SELVARAJ, ARAVIND</creator><creator>MUKHERJEE, JAYANTA</creator><creator>PATI, BISWANATH</creator><creator>DAS, RAHUL</creator><scope>EVB</scope></search><sort><creationdate>20240918</creationdate><title>SYNTHETIC POSITIVE IMAGE GENERATION FOR FINE GRAIN IMAGE SIMILARITY BASED APPAREL SEARCH</title><author>SELVARAJ, ARAVIND ; MUKHERJEE, JAYANTA ; PATI, BISWANATH ; DAS, RAHUL</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_EP4432122A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng ; fre ; ger</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>SELVARAJ, ARAVIND</creatorcontrib><creatorcontrib>MUKHERJEE, JAYANTA</creatorcontrib><creatorcontrib>PATI, BISWANATH</creatorcontrib><creatorcontrib>DAS, RAHUL</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>SELVARAJ, ARAVIND</au><au>MUKHERJEE, JAYANTA</au><au>PATI, BISWANATH</au><au>DAS, RAHUL</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>SYNTHETIC POSITIVE IMAGE GENERATION FOR FINE GRAIN IMAGE SIMILARITY BASED APPAREL SEARCH</title><date>2024-09-18</date><risdate>2024</risdate><abstract>In apparel search context, process of finding a similar item out of thousands of other items is a cumbersome and computationally heavy process. In order to build a deep learning model that can perform the similarity search, hundreds of training images per Stock Keeping Unit (SKU) are required. Due to shortage of training data, this approach fails to generate a deep learning model that can perform the similarity search in intended manner. The existing approaches may also require domain experts to perform classification of apparels, so as to generate the training data. The method and system disclosed herein provide an approach in which positive images and negative images are generated from each query image, which in turn are used for generating a training data. The training data is then used to generate a deep learning model, which is used to perform the similarity search.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng ; fre ; ger
recordid cdi_epo_espacenet_EP4432122A1
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title SYNTHETIC POSITIVE IMAGE GENERATION FOR FINE GRAIN IMAGE SIMILARITY BASED APPAREL SEARCH
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T23%3A48%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=SELVARAJ,%20ARAVIND&rft.date=2024-09-18&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EEP4432122A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true