ASYNCHRONOUS DEEP REINFORCEMENT LEARNING
Methods, systems, and apparatus, including computer programs encoded on computer storage media, for asynchronous deep reinforcement learning. One of the systems includes one or more computers configured to implement a plurality of workers, wherein each worker is configured to operate independently o...
Gespeichert in:
Hauptverfasser: | , , , , , |
---|---|
Format: | Patent |
Sprache: | eng ; fre ; ger |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | HARLEY, Timothy James Alexander KAVUKCUOGLU, Koray BADIA, Adria Puigdomenech SILVER, David MNIH, Volodymyr GRAVES, Alexander Benjamin |
description | Methods, systems, and apparatus, including computer programs encoded on computer storage media, for asynchronous deep reinforcement learning. One of the systems includes one or more computers configured to implement a plurality of workers, wherein each worker is configured to operate independently of each other worker, and wherein each worker is associated with a respective actor that interacts with a respective replica of the environment during the training of the deep neural network. Aspects of the present specification have the technical effect of faster training of a neural network and/or reducing the memory requirements for the training. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_EP4398159A2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EP4398159A2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_EP4398159A23</originalsourceid><addsrcrecordid>eNrjZNBwDI70c_YI8vfzDw1WcHF1DVAIcvX0c_MPcnb1dfULUfBxdQzy8_Rz52FgTUvMKU7lhdLcDApuriHOHrqpBfnxqcUFicmpeakl8a4BJsaWFoamlo5GxkQoAQDlsCQS</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>ASYNCHRONOUS DEEP REINFORCEMENT LEARNING</title><source>esp@cenet</source><creator>HARLEY, Timothy James Alexander ; KAVUKCUOGLU, Koray ; BADIA, Adria Puigdomenech ; SILVER, David ; MNIH, Volodymyr ; GRAVES, Alexander Benjamin</creator><creatorcontrib>HARLEY, Timothy James Alexander ; KAVUKCUOGLU, Koray ; BADIA, Adria Puigdomenech ; SILVER, David ; MNIH, Volodymyr ; GRAVES, Alexander Benjamin</creatorcontrib><description>Methods, systems, and apparatus, including computer programs encoded on computer storage media, for asynchronous deep reinforcement learning. One of the systems includes one or more computers configured to implement a plurality of workers, wherein each worker is configured to operate independently of each other worker, and wherein each worker is associated with a respective actor that interacts with a respective replica of the environment during the training of the deep neural network. Aspects of the present specification have the technical effect of faster training of a neural network and/or reducing the memory requirements for the training.</description><language>eng ; fre ; ger</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240710&DB=EPODOC&CC=EP&NR=4398159A2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25543,76294</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240710&DB=EPODOC&CC=EP&NR=4398159A2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>HARLEY, Timothy James Alexander</creatorcontrib><creatorcontrib>KAVUKCUOGLU, Koray</creatorcontrib><creatorcontrib>BADIA, Adria Puigdomenech</creatorcontrib><creatorcontrib>SILVER, David</creatorcontrib><creatorcontrib>MNIH, Volodymyr</creatorcontrib><creatorcontrib>GRAVES, Alexander Benjamin</creatorcontrib><title>ASYNCHRONOUS DEEP REINFORCEMENT LEARNING</title><description>Methods, systems, and apparatus, including computer programs encoded on computer storage media, for asynchronous deep reinforcement learning. One of the systems includes one or more computers configured to implement a plurality of workers, wherein each worker is configured to operate independently of each other worker, and wherein each worker is associated with a respective actor that interacts with a respective replica of the environment during the training of the deep neural network. Aspects of the present specification have the technical effect of faster training of a neural network and/or reducing the memory requirements for the training.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZNBwDI70c_YI8vfzDw1WcHF1DVAIcvX0c_MPcnb1dfULUfBxdQzy8_Rz52FgTUvMKU7lhdLcDApuriHOHrqpBfnxqcUFicmpeakl8a4BJsaWFoamlo5GxkQoAQDlsCQS</recordid><startdate>20240710</startdate><enddate>20240710</enddate><creator>HARLEY, Timothy James Alexander</creator><creator>KAVUKCUOGLU, Koray</creator><creator>BADIA, Adria Puigdomenech</creator><creator>SILVER, David</creator><creator>MNIH, Volodymyr</creator><creator>GRAVES, Alexander Benjamin</creator><scope>EVB</scope></search><sort><creationdate>20240710</creationdate><title>ASYNCHRONOUS DEEP REINFORCEMENT LEARNING</title><author>HARLEY, Timothy James Alexander ; KAVUKCUOGLU, Koray ; BADIA, Adria Puigdomenech ; SILVER, David ; MNIH, Volodymyr ; GRAVES, Alexander Benjamin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_EP4398159A23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng ; fre ; ger</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>HARLEY, Timothy James Alexander</creatorcontrib><creatorcontrib>KAVUKCUOGLU, Koray</creatorcontrib><creatorcontrib>BADIA, Adria Puigdomenech</creatorcontrib><creatorcontrib>SILVER, David</creatorcontrib><creatorcontrib>MNIH, Volodymyr</creatorcontrib><creatorcontrib>GRAVES, Alexander Benjamin</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>HARLEY, Timothy James Alexander</au><au>KAVUKCUOGLU, Koray</au><au>BADIA, Adria Puigdomenech</au><au>SILVER, David</au><au>MNIH, Volodymyr</au><au>GRAVES, Alexander Benjamin</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>ASYNCHRONOUS DEEP REINFORCEMENT LEARNING</title><date>2024-07-10</date><risdate>2024</risdate><abstract>Methods, systems, and apparatus, including computer programs encoded on computer storage media, for asynchronous deep reinforcement learning. One of the systems includes one or more computers configured to implement a plurality of workers, wherein each worker is configured to operate independently of each other worker, and wherein each worker is associated with a respective actor that interacts with a respective replica of the environment during the training of the deep neural network. Aspects of the present specification have the technical effect of faster training of a neural network and/or reducing the memory requirements for the training.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng ; fre ; ger |
recordid | cdi_epo_espacenet_EP4398159A2 |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING PHYSICS |
title | ASYNCHRONOUS DEEP REINFORCEMENT LEARNING |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T18%3A48%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=HARLEY,%20Timothy%20James%20Alexander&rft.date=2024-07-10&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EEP4398159A2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |