ENVIRONMENT NAVIGATION USING REINFORCEMENT LEARNING

Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for training a reinforcement learning system. In one aspect, a method of training an action selection policy neural network for use in selecting actions to be performed by an agent navigating through a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: HADSELL, Raia Thais, KAVUKCUOGLU, Koray, DENIL, Misha Man Ray, BANINO, Andrea, SOYER, Hubert Josef, MIROWSKI, Piotr Wojciech, GOROSHIN, Rostislav, SIFRE, Laurent, VIOLA, Fabio, KUMARAN, Sudarshan, PASCANU, Razvan, BALLARD, Andrew James
Format: Patent
Sprache:eng ; fre ; ger
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator HADSELL, Raia Thais
KAVUKCUOGLU, Koray
DENIL, Misha Man Ray
BANINO, Andrea
SOYER, Hubert Josef
MIROWSKI, Piotr Wojciech
GOROSHIN, Rostislav
SIFRE, Laurent
VIOLA, Fabio
KUMARAN, Sudarshan
PASCANU, Razvan
BALLARD, Andrew James
description Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for training a reinforcement learning system. In one aspect, a method of training an action selection policy neural network for use in selecting actions to be performed by an agent navigating through an environment to accomplish one or more goals comprises: receiving an observation image characterizing a current state of the environment; processing, using the action selection policy neural network, an input comprising the observation image to generate an action selection output; processing, using a loop closure prediction neural network, an intermediate output generated by the action selection policy neural network to predict whether the agent has returned to a location in the environment that the agent has already visited; and backpropagating a gradient of a loop closure based auxiliary loss into the action selection policy neural network to determine a loop closure based auxiliary update for current values of the network parameters.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_EP4386624A2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EP4386624A2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_EP4386624A23</originalsourceid><addsrcrecordid>eNrjZDB29QvzDPL383X1C1HwcwzzdHcM8fT3UwgN9vRzVwhy9fRz8w9ydgVL-7g6BvkBhXkYWNMSc4pTeaE0N4OCm2uIs4duakF-fGpxQWJyal5qSbxrgImxhZmZkYmjkTERSgCKeCcy</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>ENVIRONMENT NAVIGATION USING REINFORCEMENT LEARNING</title><source>esp@cenet</source><creator>HADSELL, Raia Thais ; KAVUKCUOGLU, Koray ; DENIL, Misha Man Ray ; BANINO, Andrea ; SOYER, Hubert Josef ; MIROWSKI, Piotr Wojciech ; GOROSHIN, Rostislav ; SIFRE, Laurent ; VIOLA, Fabio ; KUMARAN, Sudarshan ; PASCANU, Razvan ; BALLARD, Andrew James</creator><creatorcontrib>HADSELL, Raia Thais ; KAVUKCUOGLU, Koray ; DENIL, Misha Man Ray ; BANINO, Andrea ; SOYER, Hubert Josef ; MIROWSKI, Piotr Wojciech ; GOROSHIN, Rostislav ; SIFRE, Laurent ; VIOLA, Fabio ; KUMARAN, Sudarshan ; PASCANU, Razvan ; BALLARD, Andrew James</creatorcontrib><description>Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for training a reinforcement learning system. In one aspect, a method of training an action selection policy neural network for use in selecting actions to be performed by an agent navigating through an environment to accomplish one or more goals comprises: receiving an observation image characterizing a current state of the environment; processing, using the action selection policy neural network, an input comprising the observation image to generate an action selection output; processing, using a loop closure prediction neural network, an intermediate output generated by the action selection policy neural network to predict whether the agent has returned to a location in the environment that the agent has already visited; and backpropagating a gradient of a loop closure based auxiliary loss into the action selection policy neural network to determine a loop closure based auxiliary update for current values of the network parameters.</description><language>eng ; fre ; ger</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240619&amp;DB=EPODOC&amp;CC=EP&amp;NR=4386624A2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240619&amp;DB=EPODOC&amp;CC=EP&amp;NR=4386624A2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>HADSELL, Raia Thais</creatorcontrib><creatorcontrib>KAVUKCUOGLU, Koray</creatorcontrib><creatorcontrib>DENIL, Misha Man Ray</creatorcontrib><creatorcontrib>BANINO, Andrea</creatorcontrib><creatorcontrib>SOYER, Hubert Josef</creatorcontrib><creatorcontrib>MIROWSKI, Piotr Wojciech</creatorcontrib><creatorcontrib>GOROSHIN, Rostislav</creatorcontrib><creatorcontrib>SIFRE, Laurent</creatorcontrib><creatorcontrib>VIOLA, Fabio</creatorcontrib><creatorcontrib>KUMARAN, Sudarshan</creatorcontrib><creatorcontrib>PASCANU, Razvan</creatorcontrib><creatorcontrib>BALLARD, Andrew James</creatorcontrib><title>ENVIRONMENT NAVIGATION USING REINFORCEMENT LEARNING</title><description>Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for training a reinforcement learning system. In one aspect, a method of training an action selection policy neural network for use in selecting actions to be performed by an agent navigating through an environment to accomplish one or more goals comprises: receiving an observation image characterizing a current state of the environment; processing, using the action selection policy neural network, an input comprising the observation image to generate an action selection output; processing, using a loop closure prediction neural network, an intermediate output generated by the action selection policy neural network to predict whether the agent has returned to a location in the environment that the agent has already visited; and backpropagating a gradient of a loop closure based auxiliary loss into the action selection policy neural network to determine a loop closure based auxiliary update for current values of the network parameters.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZDB29QvzDPL383X1C1HwcwzzdHcM8fT3UwgN9vRzVwhy9fRz8w9ydgVL-7g6BvkBhXkYWNMSc4pTeaE0N4OCm2uIs4duakF-fGpxQWJyal5qSbxrgImxhZmZkYmjkTERSgCKeCcy</recordid><startdate>20240619</startdate><enddate>20240619</enddate><creator>HADSELL, Raia Thais</creator><creator>KAVUKCUOGLU, Koray</creator><creator>DENIL, Misha Man Ray</creator><creator>BANINO, Andrea</creator><creator>SOYER, Hubert Josef</creator><creator>MIROWSKI, Piotr Wojciech</creator><creator>GOROSHIN, Rostislav</creator><creator>SIFRE, Laurent</creator><creator>VIOLA, Fabio</creator><creator>KUMARAN, Sudarshan</creator><creator>PASCANU, Razvan</creator><creator>BALLARD, Andrew James</creator><scope>EVB</scope></search><sort><creationdate>20240619</creationdate><title>ENVIRONMENT NAVIGATION USING REINFORCEMENT LEARNING</title><author>HADSELL, Raia Thais ; KAVUKCUOGLU, Koray ; DENIL, Misha Man Ray ; BANINO, Andrea ; SOYER, Hubert Josef ; MIROWSKI, Piotr Wojciech ; GOROSHIN, Rostislav ; SIFRE, Laurent ; VIOLA, Fabio ; KUMARAN, Sudarshan ; PASCANU, Razvan ; BALLARD, Andrew James</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_EP4386624A23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng ; fre ; ger</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>HADSELL, Raia Thais</creatorcontrib><creatorcontrib>KAVUKCUOGLU, Koray</creatorcontrib><creatorcontrib>DENIL, Misha Man Ray</creatorcontrib><creatorcontrib>BANINO, Andrea</creatorcontrib><creatorcontrib>SOYER, Hubert Josef</creatorcontrib><creatorcontrib>MIROWSKI, Piotr Wojciech</creatorcontrib><creatorcontrib>GOROSHIN, Rostislav</creatorcontrib><creatorcontrib>SIFRE, Laurent</creatorcontrib><creatorcontrib>VIOLA, Fabio</creatorcontrib><creatorcontrib>KUMARAN, Sudarshan</creatorcontrib><creatorcontrib>PASCANU, Razvan</creatorcontrib><creatorcontrib>BALLARD, Andrew James</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>HADSELL, Raia Thais</au><au>KAVUKCUOGLU, Koray</au><au>DENIL, Misha Man Ray</au><au>BANINO, Andrea</au><au>SOYER, Hubert Josef</au><au>MIROWSKI, Piotr Wojciech</au><au>GOROSHIN, Rostislav</au><au>SIFRE, Laurent</au><au>VIOLA, Fabio</au><au>KUMARAN, Sudarshan</au><au>PASCANU, Razvan</au><au>BALLARD, Andrew James</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>ENVIRONMENT NAVIGATION USING REINFORCEMENT LEARNING</title><date>2024-06-19</date><risdate>2024</risdate><abstract>Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for training a reinforcement learning system. In one aspect, a method of training an action selection policy neural network for use in selecting actions to be performed by an agent navigating through an environment to accomplish one or more goals comprises: receiving an observation image characterizing a current state of the environment; processing, using the action selection policy neural network, an input comprising the observation image to generate an action selection output; processing, using a loop closure prediction neural network, an intermediate output generated by the action selection policy neural network to predict whether the agent has returned to a location in the environment that the agent has already visited; and backpropagating a gradient of a loop closure based auxiliary loss into the action selection policy neural network to determine a loop closure based auxiliary update for current values of the network parameters.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng ; fre ; ger
recordid cdi_epo_espacenet_EP4386624A2
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
PHYSICS
title ENVIRONMENT NAVIGATION USING REINFORCEMENT LEARNING
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T01%3A39%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=HADSELL,%20Raia%20Thais&rft.date=2024-06-19&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EEP4386624A2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true