NETWORK ACCESS ANOMALY DETECTION VIA GRAPH EMBEDDING

Disclosed is a scalable, graph-based approach to detecting anomalous accesses to resources in a computer network. Access events are represented as edges between resource nodes and accessing nodes (e.g., corresponding to users) in a bipartite graph, from which vector representations of the nodes that...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: MODELL, Alexander Donald, BERTIGER, Anna Swanson, LARSON, Jonathan Karl
Format: Patent
Sprache:eng ; fre ; ger
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Disclosed is a scalable, graph-based approach to detecting anomalous accesses to resources in a computer network. Access events are represented as edges between resource nodes and accessing nodes (e.g., corresponding to users) in a bipartite graph, from which vector representations of the nodes that reflect the connections can be computed by graph embedding. For an access event of interest, an anomaly score may be computed based on dissimilarities, in terms of their embedding distances, between the associated accessing node and other accessing nodes that have accessed the same resource, and/or between the associated resource node and other resource nodes that have been accessed by the same accessing node.