A DEEP LEARNING BASED APPROACH FOR OCT IMAGE QUALITY ASSURANCE

Aspects of the disclosure relate to systems, methods, and algorithms to train a machine learning model or neural network to classify OCT images. The neural network or machine learning model can receive annotated OCT images indicating which portions of the OCT image are blocked and which are clear as...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: GOPINATH, Ajay, SAVIDGE, Kyle, Edward, BLABER, Justin, Akira, CHEN, Humphrey, ZHANG, Angela, AMIS, Gregory, Patrick
Format: Patent
Sprache:eng ; fre ; ger
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator GOPINATH, Ajay
SAVIDGE, Kyle, Edward
BLABER, Justin, Akira
CHEN, Humphrey
ZHANG, Angela
AMIS, Gregory, Patrick
description Aspects of the disclosure relate to systems, methods, and algorithms to train a machine learning model or neural network to classify OCT images. The neural network or machine learning model can receive annotated OCT images indicating which portions of the OCT image are blocked and which are clear as well as a classification of the OCT image as clear or blocked. After training, the neural network can be used to classify one or more new OCT images. A user interface can be provided to output the results of the classification and summarize the analysis of the one or more OCT images.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_EP4370021A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EP4370021A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_EP4370021A13</originalsourceid><addsrcrecordid>eNrjZLBzVHBxdQ1Q8HF1DPLz9HNXcHIMdnVRcAwICPJ3dPZQcPMPUvB3DlHw9HV0d1UIDHX08QyJVHAMDg4NcvRzduVhYE1LzClO5YXS3AwKbq4hzh66qQX58anFBYnJqXmpJfGuASbG5gYGRoaOhsZEKAEAwnApKQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>A DEEP LEARNING BASED APPROACH FOR OCT IMAGE QUALITY ASSURANCE</title><source>esp@cenet</source><creator>GOPINATH, Ajay ; SAVIDGE, Kyle, Edward ; BLABER, Justin, Akira ; CHEN, Humphrey ; ZHANG, Angela ; AMIS, Gregory, Patrick</creator><creatorcontrib>GOPINATH, Ajay ; SAVIDGE, Kyle, Edward ; BLABER, Justin, Akira ; CHEN, Humphrey ; ZHANG, Angela ; AMIS, Gregory, Patrick</creatorcontrib><description>Aspects of the disclosure relate to systems, methods, and algorithms to train a machine learning model or neural network to classify OCT images. The neural network or machine learning model can receive annotated OCT images indicating which portions of the OCT image are blocked and which are clear as well as a classification of the OCT image as clear or blocked. After training, the neural network can be used to classify one or more new OCT images. A user interface can be provided to output the results of the classification and summarize the analysis of the one or more OCT images.</description><language>eng ; fre ; ger</language><subject>CALCULATING ; COMPUTING ; COUNTING ; DIAGNOSIS ; HUMAN NECESSITIES ; HYGIENE ; IDENTIFICATION ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; MEDICAL OR VETERINARY SCIENCE ; PHYSICS ; SURGERY</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240522&amp;DB=EPODOC&amp;CC=EP&amp;NR=4370021A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,777,882,25545,76296</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240522&amp;DB=EPODOC&amp;CC=EP&amp;NR=4370021A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>GOPINATH, Ajay</creatorcontrib><creatorcontrib>SAVIDGE, Kyle, Edward</creatorcontrib><creatorcontrib>BLABER, Justin, Akira</creatorcontrib><creatorcontrib>CHEN, Humphrey</creatorcontrib><creatorcontrib>ZHANG, Angela</creatorcontrib><creatorcontrib>AMIS, Gregory, Patrick</creatorcontrib><title>A DEEP LEARNING BASED APPROACH FOR OCT IMAGE QUALITY ASSURANCE</title><description>Aspects of the disclosure relate to systems, methods, and algorithms to train a machine learning model or neural network to classify OCT images. The neural network or machine learning model can receive annotated OCT images indicating which portions of the OCT image are blocked and which are clear as well as a classification of the OCT image as clear or blocked. After training, the neural network can be used to classify one or more new OCT images. A user interface can be provided to output the results of the classification and summarize the analysis of the one or more OCT images.</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DIAGNOSIS</subject><subject>HUMAN NECESSITIES</subject><subject>HYGIENE</subject><subject>IDENTIFICATION</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>MEDICAL OR VETERINARY SCIENCE</subject><subject>PHYSICS</subject><subject>SURGERY</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZLBzVHBxdQ1Q8HF1DPLz9HNXcHIMdnVRcAwICPJ3dPZQcPMPUvB3DlHw9HV0d1UIDHX08QyJVHAMDg4NcvRzduVhYE1LzClO5YXS3AwKbq4hzh66qQX58anFBYnJqXmpJfGuASbG5gYGRoaOhsZEKAEAwnApKQ</recordid><startdate>20240522</startdate><enddate>20240522</enddate><creator>GOPINATH, Ajay</creator><creator>SAVIDGE, Kyle, Edward</creator><creator>BLABER, Justin, Akira</creator><creator>CHEN, Humphrey</creator><creator>ZHANG, Angela</creator><creator>AMIS, Gregory, Patrick</creator><scope>EVB</scope></search><sort><creationdate>20240522</creationdate><title>A DEEP LEARNING BASED APPROACH FOR OCT IMAGE QUALITY ASSURANCE</title><author>GOPINATH, Ajay ; SAVIDGE, Kyle, Edward ; BLABER, Justin, Akira ; CHEN, Humphrey ; ZHANG, Angela ; AMIS, Gregory, Patrick</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_EP4370021A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng ; fre ; ger</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DIAGNOSIS</topic><topic>HUMAN NECESSITIES</topic><topic>HYGIENE</topic><topic>IDENTIFICATION</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>MEDICAL OR VETERINARY SCIENCE</topic><topic>PHYSICS</topic><topic>SURGERY</topic><toplevel>online_resources</toplevel><creatorcontrib>GOPINATH, Ajay</creatorcontrib><creatorcontrib>SAVIDGE, Kyle, Edward</creatorcontrib><creatorcontrib>BLABER, Justin, Akira</creatorcontrib><creatorcontrib>CHEN, Humphrey</creatorcontrib><creatorcontrib>ZHANG, Angela</creatorcontrib><creatorcontrib>AMIS, Gregory, Patrick</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>GOPINATH, Ajay</au><au>SAVIDGE, Kyle, Edward</au><au>BLABER, Justin, Akira</au><au>CHEN, Humphrey</au><au>ZHANG, Angela</au><au>AMIS, Gregory, Patrick</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>A DEEP LEARNING BASED APPROACH FOR OCT IMAGE QUALITY ASSURANCE</title><date>2024-05-22</date><risdate>2024</risdate><abstract>Aspects of the disclosure relate to systems, methods, and algorithms to train a machine learning model or neural network to classify OCT images. The neural network or machine learning model can receive annotated OCT images indicating which portions of the OCT image are blocked and which are clear as well as a classification of the OCT image as clear or blocked. After training, the neural network can be used to classify one or more new OCT images. A user interface can be provided to output the results of the classification and summarize the analysis of the one or more OCT images.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng ; fre ; ger
recordid cdi_epo_espacenet_EP4370021A1
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
DIAGNOSIS
HUMAN NECESSITIES
HYGIENE
IDENTIFICATION
IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
MEDICAL OR VETERINARY SCIENCE
PHYSICS
SURGERY
title A DEEP LEARNING BASED APPROACH FOR OCT IMAGE QUALITY ASSURANCE
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T05%3A22%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=GOPINATH,%20Ajay&rft.date=2024-05-22&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EEP4370021A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true