BIOPSY-FREE IN VIVO VIRTUAL HISTOLOGY OF TISSUE USING DEEP LEARNING

A deep learning-based system and method is provided that uses a convolutional neural network to rapidly transform in vivo reflectance confocal microscopy (RCM) images of unstained skin into virtually-stained hematoxylin and eosin-like images with microscopic resolution, enabling visualization of epi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: ZHANG, Xiaoran, GARFINKEL, Jason, OZCAN, Aydogan, LI, Jingxi, SCUMPIA, Philip O, RIVENSON, Yair, RUBINSTEIN, Gennady
Format: Patent
Sprache:eng ; fre ; ger
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator ZHANG, Xiaoran
GARFINKEL, Jason
OZCAN, Aydogan
LI, Jingxi
SCUMPIA, Philip O
RIVENSON, Yair
RUBINSTEIN, Gennady
description A deep learning-based system and method is provided that uses a convolutional neural network to rapidly transform in vivo reflectance confocal microscopy (RCM) images of unstained skin into virtually-stained hematoxylin and eosin-like images with microscopic resolution, enabling visualization of epidermis, dermal-epidermal junction, and superficial dermis layers. The network is trained using ex vivo RCM images of excised unstained tissue and microscopic images of the same tissue labeled with acetic acid nuclear contrast staining as the ground truth. The trained neural network can be used to rapidly perform virtual histology of in vivo, label-free RCM images of normal skin structure, basal cell carcinoma and melanocytic nevi with pigmented melanocytes, demonstrating similar histological features of traditional histology from the same excised tissue. The system and method enables more rapid diagnosis of malignant skin neoplasms and reduces invasive skin biopsies.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_EP4367643A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EP4367643A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_EP4367643A13</originalsourceid><addsrcrecordid>eNrjZHB28vQPCI7UdQtydVXw9FMI8wzzBxJBIaGOPgoensEh_j7-7pEK_m4KIZ7BwaGuCqHBnn7uCi6urgEKPq6OQX5AHg8Da1piTnEqL5TmZlBwcw1x9tBNLciPTy0uSExOzUstiXcNMDE2MzczMXY0NCZCCQDr-CtD</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>BIOPSY-FREE IN VIVO VIRTUAL HISTOLOGY OF TISSUE USING DEEP LEARNING</title><source>esp@cenet</source><creator>ZHANG, Xiaoran ; GARFINKEL, Jason ; OZCAN, Aydogan ; LI, Jingxi ; SCUMPIA, Philip O ; RIVENSON, Yair ; RUBINSTEIN, Gennady</creator><creatorcontrib>ZHANG, Xiaoran ; GARFINKEL, Jason ; OZCAN, Aydogan ; LI, Jingxi ; SCUMPIA, Philip O ; RIVENSON, Yair ; RUBINSTEIN, Gennady</creatorcontrib><description>A deep learning-based system and method is provided that uses a convolutional neural network to rapidly transform in vivo reflectance confocal microscopy (RCM) images of unstained skin into virtually-stained hematoxylin and eosin-like images with microscopic resolution, enabling visualization of epidermis, dermal-epidermal junction, and superficial dermis layers. The network is trained using ex vivo RCM images of excised unstained tissue and microscopic images of the same tissue labeled with acetic acid nuclear contrast staining as the ground truth. The trained neural network can be used to rapidly perform virtual histology of in vivo, label-free RCM images of normal skin structure, basal cell carcinoma and melanocytic nevi with pigmented melanocytes, demonstrating similar histological features of traditional histology from the same excised tissue. The system and method enables more rapid diagnosis of malignant skin neoplasms and reduces invasive skin biopsies.</description><language>eng ; fre ; ger</language><subject>CALCULATING ; COMPUTING ; COUNTING ; DIAGNOSIS ; HUMAN NECESSITIES ; HYGIENE ; IDENTIFICATION ; MEDICAL OR VETERINARY SCIENCE ; PHYSICS ; SURGERY</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240515&amp;DB=EPODOC&amp;CC=EP&amp;NR=4367643A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240515&amp;DB=EPODOC&amp;CC=EP&amp;NR=4367643A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>ZHANG, Xiaoran</creatorcontrib><creatorcontrib>GARFINKEL, Jason</creatorcontrib><creatorcontrib>OZCAN, Aydogan</creatorcontrib><creatorcontrib>LI, Jingxi</creatorcontrib><creatorcontrib>SCUMPIA, Philip O</creatorcontrib><creatorcontrib>RIVENSON, Yair</creatorcontrib><creatorcontrib>RUBINSTEIN, Gennady</creatorcontrib><title>BIOPSY-FREE IN VIVO VIRTUAL HISTOLOGY OF TISSUE USING DEEP LEARNING</title><description>A deep learning-based system and method is provided that uses a convolutional neural network to rapidly transform in vivo reflectance confocal microscopy (RCM) images of unstained skin into virtually-stained hematoxylin and eosin-like images with microscopic resolution, enabling visualization of epidermis, dermal-epidermal junction, and superficial dermis layers. The network is trained using ex vivo RCM images of excised unstained tissue and microscopic images of the same tissue labeled with acetic acid nuclear contrast staining as the ground truth. The trained neural network can be used to rapidly perform virtual histology of in vivo, label-free RCM images of normal skin structure, basal cell carcinoma and melanocytic nevi with pigmented melanocytes, demonstrating similar histological features of traditional histology from the same excised tissue. The system and method enables more rapid diagnosis of malignant skin neoplasms and reduces invasive skin biopsies.</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DIAGNOSIS</subject><subject>HUMAN NECESSITIES</subject><subject>HYGIENE</subject><subject>IDENTIFICATION</subject><subject>MEDICAL OR VETERINARY SCIENCE</subject><subject>PHYSICS</subject><subject>SURGERY</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZHB28vQPCI7UdQtydVXw9FMI8wzzBxJBIaGOPgoensEh_j7-7pEK_m4KIZ7BwaGuCqHBnn7uCi6urgEKPq6OQX5AHg8Da1piTnEqL5TmZlBwcw1x9tBNLciPTy0uSExOzUstiXcNMDE2MzczMXY0NCZCCQDr-CtD</recordid><startdate>20240515</startdate><enddate>20240515</enddate><creator>ZHANG, Xiaoran</creator><creator>GARFINKEL, Jason</creator><creator>OZCAN, Aydogan</creator><creator>LI, Jingxi</creator><creator>SCUMPIA, Philip O</creator><creator>RIVENSON, Yair</creator><creator>RUBINSTEIN, Gennady</creator><scope>EVB</scope></search><sort><creationdate>20240515</creationdate><title>BIOPSY-FREE IN VIVO VIRTUAL HISTOLOGY OF TISSUE USING DEEP LEARNING</title><author>ZHANG, Xiaoran ; GARFINKEL, Jason ; OZCAN, Aydogan ; LI, Jingxi ; SCUMPIA, Philip O ; RIVENSON, Yair ; RUBINSTEIN, Gennady</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_EP4367643A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng ; fre ; ger</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DIAGNOSIS</topic><topic>HUMAN NECESSITIES</topic><topic>HYGIENE</topic><topic>IDENTIFICATION</topic><topic>MEDICAL OR VETERINARY SCIENCE</topic><topic>PHYSICS</topic><topic>SURGERY</topic><toplevel>online_resources</toplevel><creatorcontrib>ZHANG, Xiaoran</creatorcontrib><creatorcontrib>GARFINKEL, Jason</creatorcontrib><creatorcontrib>OZCAN, Aydogan</creatorcontrib><creatorcontrib>LI, Jingxi</creatorcontrib><creatorcontrib>SCUMPIA, Philip O</creatorcontrib><creatorcontrib>RIVENSON, Yair</creatorcontrib><creatorcontrib>RUBINSTEIN, Gennady</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>ZHANG, Xiaoran</au><au>GARFINKEL, Jason</au><au>OZCAN, Aydogan</au><au>LI, Jingxi</au><au>SCUMPIA, Philip O</au><au>RIVENSON, Yair</au><au>RUBINSTEIN, Gennady</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>BIOPSY-FREE IN VIVO VIRTUAL HISTOLOGY OF TISSUE USING DEEP LEARNING</title><date>2024-05-15</date><risdate>2024</risdate><abstract>A deep learning-based system and method is provided that uses a convolutional neural network to rapidly transform in vivo reflectance confocal microscopy (RCM) images of unstained skin into virtually-stained hematoxylin and eosin-like images with microscopic resolution, enabling visualization of epidermis, dermal-epidermal junction, and superficial dermis layers. The network is trained using ex vivo RCM images of excised unstained tissue and microscopic images of the same tissue labeled with acetic acid nuclear contrast staining as the ground truth. The trained neural network can be used to rapidly perform virtual histology of in vivo, label-free RCM images of normal skin structure, basal cell carcinoma and melanocytic nevi with pigmented melanocytes, demonstrating similar histological features of traditional histology from the same excised tissue. The system and method enables more rapid diagnosis of malignant skin neoplasms and reduces invasive skin biopsies.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng ; fre ; ger
recordid cdi_epo_espacenet_EP4367643A1
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
DIAGNOSIS
HUMAN NECESSITIES
HYGIENE
IDENTIFICATION
MEDICAL OR VETERINARY SCIENCE
PHYSICS
SURGERY
title BIOPSY-FREE IN VIVO VIRTUAL HISTOLOGY OF TISSUE USING DEEP LEARNING
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T12%3A55%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=ZHANG,%20Xiaoran&rft.date=2024-05-15&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EEP4367643A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true