DETERMINING TOPIC LABELS FOR COMMUNICATION TRANSCRIPTS BASED ON A TRAINED GENERATIVE SUMMARIZATION MODEL

The disclosure herein describes determining topics of communication transcripts using trained summarization models. A first communication transcript associated with a first communication is obtained and divided into a first set of communication segments. A first set of topic descriptions is generate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: ASI, Abedelkader, RONEN, Royi, KUPER, Yarin, ALTUS, Erez, ROSENTHAL, Tomer, SHAANAN, Rona
Format: Patent
Sprache:eng ; fre ; ger
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator ASI, Abedelkader
RONEN, Royi
KUPER, Yarin
ALTUS, Erez
ROSENTHAL, Tomer
SHAANAN, Rona
description The disclosure herein describes determining topics of communication transcripts using trained summarization models. A first communication transcript associated with a first communication is obtained and divided into a first set of communication segments. A first set of topic descriptions is generated based on the first set of communication segments by analyzing each communication segment of the first set of communication segments with a generative language model. A summarization model is trained using the first set of communication segments and associated first set of topic descriptions as training data. The trained summarization model is then applied to a second communication transcript and, based on applying the trained summarization model to the second communication transcript, a second set of topic descriptions of the second communication transcript is generated. By training the summarization model based on output of the generative language model, it enables efficient, accurate generation of topic descriptions from communication transcripts.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_EP4348451A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EP4348451A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_EP4348451A13</originalsourceid><addsrcrecordid>eNqNi0EKwjAQRbNxIeod5gIuSiu4nabTOpBMSpJ24aYUibgQLdT7Y0UP4OrzHu-v1a2iSN6ysDQQXcsaDJZkAtTOg3bWdsIaIzuB6FGC9tzGACUGqmCR-NEsCzQk5JeyJwidtej5_P1ZV5HZqtV1vM9p99uNgpqiPu3T9BzSPI2X9EivgdoiL47FIcMs_yN5A9-LNYU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>DETERMINING TOPIC LABELS FOR COMMUNICATION TRANSCRIPTS BASED ON A TRAINED GENERATIVE SUMMARIZATION MODEL</title><source>esp@cenet</source><creator>ASI, Abedelkader ; RONEN, Royi ; KUPER, Yarin ; ALTUS, Erez ; ROSENTHAL, Tomer ; SHAANAN, Rona</creator><creatorcontrib>ASI, Abedelkader ; RONEN, Royi ; KUPER, Yarin ; ALTUS, Erez ; ROSENTHAL, Tomer ; SHAANAN, Rona</creatorcontrib><description>The disclosure herein describes determining topics of communication transcripts using trained summarization models. A first communication transcript associated with a first communication is obtained and divided into a first set of communication segments. A first set of topic descriptions is generated based on the first set of communication segments by analyzing each communication segment of the first set of communication segments with a generative language model. A summarization model is trained using the first set of communication segments and associated first set of topic descriptions as training data. The trained summarization model is then applied to a second communication transcript and, based on applying the trained summarization model to the second communication transcript, a second set of topic descriptions of the second communication transcript is generated. By training the summarization model based on output of the generative language model, it enables efficient, accurate generation of topic descriptions from communication transcripts.</description><language>eng ; fre ; ger</language><subject>CALCULATING ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240410&amp;DB=EPODOC&amp;CC=EP&amp;NR=4348451A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25555,76308</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240410&amp;DB=EPODOC&amp;CC=EP&amp;NR=4348451A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>ASI, Abedelkader</creatorcontrib><creatorcontrib>RONEN, Royi</creatorcontrib><creatorcontrib>KUPER, Yarin</creatorcontrib><creatorcontrib>ALTUS, Erez</creatorcontrib><creatorcontrib>ROSENTHAL, Tomer</creatorcontrib><creatorcontrib>SHAANAN, Rona</creatorcontrib><title>DETERMINING TOPIC LABELS FOR COMMUNICATION TRANSCRIPTS BASED ON A TRAINED GENERATIVE SUMMARIZATION MODEL</title><description>The disclosure herein describes determining topics of communication transcripts using trained summarization models. A first communication transcript associated with a first communication is obtained and divided into a first set of communication segments. A first set of topic descriptions is generated based on the first set of communication segments by analyzing each communication segment of the first set of communication segments with a generative language model. A summarization model is trained using the first set of communication segments and associated first set of topic descriptions as training data. The trained summarization model is then applied to a second communication transcript and, based on applying the trained summarization model to the second communication transcript, a second set of topic descriptions of the second communication transcript is generated. By training the summarization model based on output of the generative language model, it enables efficient, accurate generation of topic descriptions from communication transcripts.</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNi0EKwjAQRbNxIeod5gIuSiu4nabTOpBMSpJ24aYUibgQLdT7Y0UP4OrzHu-v1a2iSN6ysDQQXcsaDJZkAtTOg3bWdsIaIzuB6FGC9tzGACUGqmCR-NEsCzQk5JeyJwidtej5_P1ZV5HZqtV1vM9p99uNgpqiPu3T9BzSPI2X9EivgdoiL47FIcMs_yN5A9-LNYU</recordid><startdate>20240410</startdate><enddate>20240410</enddate><creator>ASI, Abedelkader</creator><creator>RONEN, Royi</creator><creator>KUPER, Yarin</creator><creator>ALTUS, Erez</creator><creator>ROSENTHAL, Tomer</creator><creator>SHAANAN, Rona</creator><scope>EVB</scope></search><sort><creationdate>20240410</creationdate><title>DETERMINING TOPIC LABELS FOR COMMUNICATION TRANSCRIPTS BASED ON A TRAINED GENERATIVE SUMMARIZATION MODEL</title><author>ASI, Abedelkader ; RONEN, Royi ; KUPER, Yarin ; ALTUS, Erez ; ROSENTHAL, Tomer ; SHAANAN, Rona</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_EP4348451A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng ; fre ; ger</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>ASI, Abedelkader</creatorcontrib><creatorcontrib>RONEN, Royi</creatorcontrib><creatorcontrib>KUPER, Yarin</creatorcontrib><creatorcontrib>ALTUS, Erez</creatorcontrib><creatorcontrib>ROSENTHAL, Tomer</creatorcontrib><creatorcontrib>SHAANAN, Rona</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>ASI, Abedelkader</au><au>RONEN, Royi</au><au>KUPER, Yarin</au><au>ALTUS, Erez</au><au>ROSENTHAL, Tomer</au><au>SHAANAN, Rona</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>DETERMINING TOPIC LABELS FOR COMMUNICATION TRANSCRIPTS BASED ON A TRAINED GENERATIVE SUMMARIZATION MODEL</title><date>2024-04-10</date><risdate>2024</risdate><abstract>The disclosure herein describes determining topics of communication transcripts using trained summarization models. A first communication transcript associated with a first communication is obtained and divided into a first set of communication segments. A first set of topic descriptions is generated based on the first set of communication segments by analyzing each communication segment of the first set of communication segments with a generative language model. A summarization model is trained using the first set of communication segments and associated first set of topic descriptions as training data. The trained summarization model is then applied to a second communication transcript and, based on applying the trained summarization model to the second communication transcript, a second set of topic descriptions of the second communication transcript is generated. By training the summarization model based on output of the generative language model, it enables efficient, accurate generation of topic descriptions from communication transcripts.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng ; fre ; ger
recordid cdi_epo_espacenet_EP4348451A1
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title DETERMINING TOPIC LABELS FOR COMMUNICATION TRANSCRIPTS BASED ON A TRAINED GENERATIVE SUMMARIZATION MODEL
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T17%3A34%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=ASI,%20Abedelkader&rft.date=2024-04-10&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EEP4348451A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true