CORIOLIS MASS FLOW METER AND METHOD OF MONITORING A CORIOLIS MASS FLOW METER

Monitoring a mass flowmeter includes ascertaining a resonant frequency of a bending oscillation, wanted mode, and a density measured value of a medium as a function of the frequency. A bending oscillation is excited outside of resonance with an excitation signal having an amplitude and a frequency (...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: RIEDER, Alfred, POHL, Johan, SCHERRER, Rémy
Format: Patent
Sprache:eng ; fre ; ger
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator RIEDER, Alfred
POHL, Johan
SCHERRER, Rémy
description Monitoring a mass flowmeter includes ascertaining a resonant frequency of a bending oscillation, wanted mode, and a density measured value of a medium as a function of the frequency. A bending oscillation is excited outside of resonance with an excitation signal having an amplitude and a frequency (μ times the resonant frequency of the bending oscillation, wanted mode). An amplitude of a sensor signal of the bending oscillation outside of resonance is ascertained. A value of an integrity function of the measuring tube depending on a ratio of the sensor signal amplitude to the excitation signal amplitude of the bending oscillation is ascertained. The integrity function depends further on a density term of a transfer function that models contributions of a plurality of oscillation modes to the sensor signal. This function is reduced to reference conditions, and/or transformed to an integrity value, which has no cross sensitivities for media density.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_EP4341650B1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EP4341650B1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_EP4341650B13</originalsourceid><addsrcrecordid>eNrjZPBx9g_y9PfxDFbwdQwOVnDz8Q9X8HUNcQ1ScPRzAbE8_F0U_N0UfP39PEOASv3cFRwVcOnhYWBNS8wpTuWF0twMCm6uIc4euqkF-fGpxQWJyal5qSXxrgEmxiaGZqYGTobGRCgBAEm0LVU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>CORIOLIS MASS FLOW METER AND METHOD OF MONITORING A CORIOLIS MASS FLOW METER</title><source>esp@cenet</source><creator>RIEDER, Alfred ; POHL, Johan ; SCHERRER, Rémy</creator><creatorcontrib>RIEDER, Alfred ; POHL, Johan ; SCHERRER, Rémy</creatorcontrib><description>Monitoring a mass flowmeter includes ascertaining a resonant frequency of a bending oscillation, wanted mode, and a density measured value of a medium as a function of the frequency. A bending oscillation is excited outside of resonance with an excitation signal having an amplitude and a frequency (μ times the resonant frequency of the bending oscillation, wanted mode). An amplitude of a sensor signal of the bending oscillation outside of resonance is ascertained. A value of an integrity function of the measuring tube depending on a ratio of the sensor signal amplitude to the excitation signal amplitude of the bending oscillation is ascertained. The integrity function depends further on a density term of a transfer function that models contributions of a plurality of oscillation modes to the sensor signal. This function is reduced to reference conditions, and/or transformed to an integrity value, which has no cross sensitivities for media density.</description><language>eng ; fre ; ger</language><subject>INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIRCHEMICAL OR PHYSICAL PROPERTIES ; MEASURING ; MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUIDLEVEL ; METERING BY VOLUME ; PHYSICS ; TESTING</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20241225&amp;DB=EPODOC&amp;CC=EP&amp;NR=4341650B1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20241225&amp;DB=EPODOC&amp;CC=EP&amp;NR=4341650B1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>RIEDER, Alfred</creatorcontrib><creatorcontrib>POHL, Johan</creatorcontrib><creatorcontrib>SCHERRER, Rémy</creatorcontrib><title>CORIOLIS MASS FLOW METER AND METHOD OF MONITORING A CORIOLIS MASS FLOW METER</title><description>Monitoring a mass flowmeter includes ascertaining a resonant frequency of a bending oscillation, wanted mode, and a density measured value of a medium as a function of the frequency. A bending oscillation is excited outside of resonance with an excitation signal having an amplitude and a frequency (μ times the resonant frequency of the bending oscillation, wanted mode). An amplitude of a sensor signal of the bending oscillation outside of resonance is ascertained. A value of an integrity function of the measuring tube depending on a ratio of the sensor signal amplitude to the excitation signal amplitude of the bending oscillation is ascertained. The integrity function depends further on a density term of a transfer function that models contributions of a plurality of oscillation modes to the sensor signal. This function is reduced to reference conditions, and/or transformed to an integrity value, which has no cross sensitivities for media density.</description><subject>INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIRCHEMICAL OR PHYSICAL PROPERTIES</subject><subject>MEASURING</subject><subject>MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUIDLEVEL</subject><subject>METERING BY VOLUME</subject><subject>PHYSICS</subject><subject>TESTING</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZPBx9g_y9PfxDFbwdQwOVnDz8Q9X8HUNcQ1ScPRzAbE8_F0U_N0UfP39PEOASv3cFRwVcOnhYWBNS8wpTuWF0twMCm6uIc4euqkF-fGpxQWJyal5qSXxrgEmxiaGZqYGTobGRCgBAEm0LVU</recordid><startdate>20241225</startdate><enddate>20241225</enddate><creator>RIEDER, Alfred</creator><creator>POHL, Johan</creator><creator>SCHERRER, Rémy</creator><scope>EVB</scope></search><sort><creationdate>20241225</creationdate><title>CORIOLIS MASS FLOW METER AND METHOD OF MONITORING A CORIOLIS MASS FLOW METER</title><author>RIEDER, Alfred ; POHL, Johan ; SCHERRER, Rémy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_EP4341650B13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng ; fre ; ger</language><creationdate>2024</creationdate><topic>INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIRCHEMICAL OR PHYSICAL PROPERTIES</topic><topic>MEASURING</topic><topic>MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUIDLEVEL</topic><topic>METERING BY VOLUME</topic><topic>PHYSICS</topic><topic>TESTING</topic><toplevel>online_resources</toplevel><creatorcontrib>RIEDER, Alfred</creatorcontrib><creatorcontrib>POHL, Johan</creatorcontrib><creatorcontrib>SCHERRER, Rémy</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>RIEDER, Alfred</au><au>POHL, Johan</au><au>SCHERRER, Rémy</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>CORIOLIS MASS FLOW METER AND METHOD OF MONITORING A CORIOLIS MASS FLOW METER</title><date>2024-12-25</date><risdate>2024</risdate><abstract>Monitoring a mass flowmeter includes ascertaining a resonant frequency of a bending oscillation, wanted mode, and a density measured value of a medium as a function of the frequency. A bending oscillation is excited outside of resonance with an excitation signal having an amplitude and a frequency (μ times the resonant frequency of the bending oscillation, wanted mode). An amplitude of a sensor signal of the bending oscillation outside of resonance is ascertained. A value of an integrity function of the measuring tube depending on a ratio of the sensor signal amplitude to the excitation signal amplitude of the bending oscillation is ascertained. The integrity function depends further on a density term of a transfer function that models contributions of a plurality of oscillation modes to the sensor signal. This function is reduced to reference conditions, and/or transformed to an integrity value, which has no cross sensitivities for media density.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng ; fre ; ger
recordid cdi_epo_espacenet_EP4341650B1
source esp@cenet
subjects INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIRCHEMICAL OR PHYSICAL PROPERTIES
MEASURING
MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUIDLEVEL
METERING BY VOLUME
PHYSICS
TESTING
title CORIOLIS MASS FLOW METER AND METHOD OF MONITORING A CORIOLIS MASS FLOW METER
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T07%3A28%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=RIEDER,%20Alfred&rft.date=2024-12-25&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EEP4341650B1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true