TECHNIQUE FOR CONFIGURING A REINFORCEMENT LEARNING AGENT
A technique for configuring a reinforcement learning agent to perform a task using a reward structure derived from a task-specific definition of metric importances is disclosed. A method is performed by a computing unit executing a configurator component and includes obtaining a definition of metric...
Gespeichert in:
Hauptverfasser: | , , , , , |
---|---|
Format: | Patent |
Sprache: | eng ; fre ; ger |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | TERRA, Ahmad Ishtar INAM, Rafia RIAZ, Hassam KATTEPUR, Ajay HATA, Alberto SOMANAHALLI KRISHNA MURTHY, Prayag Gowgi |
description | A technique for configuring a reinforcement learning agent to perform a task using a reward structure derived from a task-specific definition of metric importances is disclosed. A method is performed by a computing unit executing a configurator component and includes obtaining a definition of metric importances specifying, for a plurality of performance-related metrics associated with the task, pairwise importance values each indicating a relative importance of one metric with respect to another metric of the plurality of performance-related metrics for the task, deriving a reward structure from the definition of metric importances, the reward structure defining, for each of the plurality of performance-related metrics, a reward to be attributed to an action taken by the reinforcement learning agent that yields a positive outcome in the respective performance-related metric, and configuring the reinforcement learning agent to employ the derived reward structure when performing the task. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_EP4323931A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EP4323931A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_EP4323931A13</originalsourceid><addsrcrecordid>eNrjZLAIcXX28PMMDHVVcPMPUnD293PzdA8N8vRzV3BUCHL19AOKOrv6uvqFKPi4Ogb5gSXcgVweBta0xJziVF4ozc2g4OYa4uyhm1qQH59aXJCYnJqXWhLvGmBibGRsaWzoaGhMhBIAGSkoEg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>TECHNIQUE FOR CONFIGURING A REINFORCEMENT LEARNING AGENT</title><source>esp@cenet</source><creator>TERRA, Ahmad Ishtar ; INAM, Rafia ; RIAZ, Hassam ; KATTEPUR, Ajay ; HATA, Alberto ; SOMANAHALLI KRISHNA MURTHY, Prayag Gowgi</creator><creatorcontrib>TERRA, Ahmad Ishtar ; INAM, Rafia ; RIAZ, Hassam ; KATTEPUR, Ajay ; HATA, Alberto ; SOMANAHALLI KRISHNA MURTHY, Prayag Gowgi</creatorcontrib><description>A technique for configuring a reinforcement learning agent to perform a task using a reward structure derived from a task-specific definition of metric importances is disclosed. A method is performed by a computing unit executing a configurator component and includes obtaining a definition of metric importances specifying, for a plurality of performance-related metrics associated with the task, pairwise importance values each indicating a relative importance of one metric with respect to another metric of the plurality of performance-related metrics for the task, deriving a reward structure from the definition of metric importances, the reward structure defining, for each of the plurality of performance-related metrics, a reward to be attributed to an action taken by the reinforcement learning agent that yields a positive outcome in the respective performance-related metric, and configuring the reinforcement learning agent to employ the derived reward structure when performing the task.</description><language>eng ; fre ; ger</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240221&DB=EPODOC&CC=EP&NR=4323931A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240221&DB=EPODOC&CC=EP&NR=4323931A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>TERRA, Ahmad Ishtar</creatorcontrib><creatorcontrib>INAM, Rafia</creatorcontrib><creatorcontrib>RIAZ, Hassam</creatorcontrib><creatorcontrib>KATTEPUR, Ajay</creatorcontrib><creatorcontrib>HATA, Alberto</creatorcontrib><creatorcontrib>SOMANAHALLI KRISHNA MURTHY, Prayag Gowgi</creatorcontrib><title>TECHNIQUE FOR CONFIGURING A REINFORCEMENT LEARNING AGENT</title><description>A technique for configuring a reinforcement learning agent to perform a task using a reward structure derived from a task-specific definition of metric importances is disclosed. A method is performed by a computing unit executing a configurator component and includes obtaining a definition of metric importances specifying, for a plurality of performance-related metrics associated with the task, pairwise importance values each indicating a relative importance of one metric with respect to another metric of the plurality of performance-related metrics for the task, deriving a reward structure from the definition of metric importances, the reward structure defining, for each of the plurality of performance-related metrics, a reward to be attributed to an action taken by the reinforcement learning agent that yields a positive outcome in the respective performance-related metric, and configuring the reinforcement learning agent to employ the derived reward structure when performing the task.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZLAIcXX28PMMDHVVcPMPUnD293PzdA8N8vRzV3BUCHL19AOKOrv6uvqFKPi4Ogb5gSXcgVweBta0xJziVF4ozc2g4OYa4uyhm1qQH59aXJCYnJqXWhLvGmBibGRsaWzoaGhMhBIAGSkoEg</recordid><startdate>20240221</startdate><enddate>20240221</enddate><creator>TERRA, Ahmad Ishtar</creator><creator>INAM, Rafia</creator><creator>RIAZ, Hassam</creator><creator>KATTEPUR, Ajay</creator><creator>HATA, Alberto</creator><creator>SOMANAHALLI KRISHNA MURTHY, Prayag Gowgi</creator><scope>EVB</scope></search><sort><creationdate>20240221</creationdate><title>TECHNIQUE FOR CONFIGURING A REINFORCEMENT LEARNING AGENT</title><author>TERRA, Ahmad Ishtar ; INAM, Rafia ; RIAZ, Hassam ; KATTEPUR, Ajay ; HATA, Alberto ; SOMANAHALLI KRISHNA MURTHY, Prayag Gowgi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_EP4323931A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng ; fre ; ger</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>TERRA, Ahmad Ishtar</creatorcontrib><creatorcontrib>INAM, Rafia</creatorcontrib><creatorcontrib>RIAZ, Hassam</creatorcontrib><creatorcontrib>KATTEPUR, Ajay</creatorcontrib><creatorcontrib>HATA, Alberto</creatorcontrib><creatorcontrib>SOMANAHALLI KRISHNA MURTHY, Prayag Gowgi</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>TERRA, Ahmad Ishtar</au><au>INAM, Rafia</au><au>RIAZ, Hassam</au><au>KATTEPUR, Ajay</au><au>HATA, Alberto</au><au>SOMANAHALLI KRISHNA MURTHY, Prayag Gowgi</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>TECHNIQUE FOR CONFIGURING A REINFORCEMENT LEARNING AGENT</title><date>2024-02-21</date><risdate>2024</risdate><abstract>A technique for configuring a reinforcement learning agent to perform a task using a reward structure derived from a task-specific definition of metric importances is disclosed. A method is performed by a computing unit executing a configurator component and includes obtaining a definition of metric importances specifying, for a plurality of performance-related metrics associated with the task, pairwise importance values each indicating a relative importance of one metric with respect to another metric of the plurality of performance-related metrics for the task, deriving a reward structure from the definition of metric importances, the reward structure defining, for each of the plurality of performance-related metrics, a reward to be attributed to an action taken by the reinforcement learning agent that yields a positive outcome in the respective performance-related metric, and configuring the reinforcement learning agent to employ the derived reward structure when performing the task.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng ; fre ; ger |
recordid | cdi_epo_espacenet_EP4323931A1 |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING PHYSICS |
title | TECHNIQUE FOR CONFIGURING A REINFORCEMENT LEARNING AGENT |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T18%3A45%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=TERRA,%20Ahmad%20Ishtar&rft.date=2024-02-21&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EEP4323931A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |