MACHINE LEARNING DEVICE, INFERENCE DEVICE, MACHINE LEARNING METHOD, AND MACHINE LEARNING PROGRAM

An initialization rate determination unit (22) determines, in accordance with a depth of a layer in a neural network model, a first initialization rate for initializing weights in the neural network model on a first task. A machine learning execution unit (24) generates a neural network model traine...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: KIDA Shingo, TAKEHARA Hideki, YANG Yincheng
Format: Patent
Sprache:eng ; fre ; ger
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator KIDA Shingo
TAKEHARA Hideki
YANG Yincheng
description An initialization rate determination unit (22) determines, in accordance with a depth of a layer in a neural network model, a first initialization rate for initializing weights in the neural network model on a first task. A machine learning execution unit (24) generates a neural network model trained on a first task by training on the first task by machine learning. An initialization unit (26) initializes weights in the neural network model trained on the first task, based on the first initialization rate, to generate an initialized neural network model trained on the first task, the initialized neural network trained on the first task being used in a second task.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_EP4303773A4</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EP4303773A4</sourcerecordid><originalsourceid>FETCH-epo_espacenet_EP4303773A43</originalsourceid><addsrcrecordid>eNrjZEjwdXT28PRzVfBxdQzy8_RzV3BxDfN0dtVR8PRzcw1y9XN2hYtgKPV1DfHwd9FRcPRzwZQMCPJ3D3L05WFgTUvMKU7lhdLcDApuriHOHrqpBfnxqcUFicmpeakl8a4BJsYGxubmxo4mxkQoAQCopzI5</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>MACHINE LEARNING DEVICE, INFERENCE DEVICE, MACHINE LEARNING METHOD, AND MACHINE LEARNING PROGRAM</title><source>esp@cenet</source><creator>KIDA Shingo ; TAKEHARA Hideki ; YANG Yincheng</creator><creatorcontrib>KIDA Shingo ; TAKEHARA Hideki ; YANG Yincheng</creatorcontrib><description>An initialization rate determination unit (22) determines, in accordance with a depth of a layer in a neural network model, a first initialization rate for initializing weights in the neural network model on a first task. A machine learning execution unit (24) generates a neural network model trained on a first task by training on the first task by machine learning. An initialization unit (26) initializes weights in the neural network model trained on the first task, based on the first initialization rate, to generate an initialized neural network model trained on the first task, the initialized neural network trained on the first task being used in a second task.</description><language>eng ; fre ; ger</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240731&amp;DB=EPODOC&amp;CC=EP&amp;NR=4303773A4$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76290</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240731&amp;DB=EPODOC&amp;CC=EP&amp;NR=4303773A4$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>KIDA Shingo</creatorcontrib><creatorcontrib>TAKEHARA Hideki</creatorcontrib><creatorcontrib>YANG Yincheng</creatorcontrib><title>MACHINE LEARNING DEVICE, INFERENCE DEVICE, MACHINE LEARNING METHOD, AND MACHINE LEARNING PROGRAM</title><description>An initialization rate determination unit (22) determines, in accordance with a depth of a layer in a neural network model, a first initialization rate for initializing weights in the neural network model on a first task. A machine learning execution unit (24) generates a neural network model trained on a first task by training on the first task by machine learning. An initialization unit (26) initializes weights in the neural network model trained on the first task, based on the first initialization rate, to generate an initialized neural network model trained on the first task, the initialized neural network trained on the first task being used in a second task.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZEjwdXT28PRzVfBxdQzy8_RzV3BxDfN0dtVR8PRzcw1y9XN2hYtgKPV1DfHwd9FRcPRzwZQMCPJ3D3L05WFgTUvMKU7lhdLcDApuriHOHrqpBfnxqcUFicmpeakl8a4BJsYGxubmxo4mxkQoAQCopzI5</recordid><startdate>20240731</startdate><enddate>20240731</enddate><creator>KIDA Shingo</creator><creator>TAKEHARA Hideki</creator><creator>YANG Yincheng</creator><scope>EVB</scope></search><sort><creationdate>20240731</creationdate><title>MACHINE LEARNING DEVICE, INFERENCE DEVICE, MACHINE LEARNING METHOD, AND MACHINE LEARNING PROGRAM</title><author>KIDA Shingo ; TAKEHARA Hideki ; YANG Yincheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_EP4303773A43</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng ; fre ; ger</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>KIDA Shingo</creatorcontrib><creatorcontrib>TAKEHARA Hideki</creatorcontrib><creatorcontrib>YANG Yincheng</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>KIDA Shingo</au><au>TAKEHARA Hideki</au><au>YANG Yincheng</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>MACHINE LEARNING DEVICE, INFERENCE DEVICE, MACHINE LEARNING METHOD, AND MACHINE LEARNING PROGRAM</title><date>2024-07-31</date><risdate>2024</risdate><abstract>An initialization rate determination unit (22) determines, in accordance with a depth of a layer in a neural network model, a first initialization rate for initializing weights in the neural network model on a first task. A machine learning execution unit (24) generates a neural network model trained on a first task by training on the first task by machine learning. An initialization unit (26) initializes weights in the neural network model trained on the first task, based on the first initialization rate, to generate an initialized neural network model trained on the first task, the initialized neural network trained on the first task being used in a second task.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng ; fre ; ger
recordid cdi_epo_espacenet_EP4303773A4
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title MACHINE LEARNING DEVICE, INFERENCE DEVICE, MACHINE LEARNING METHOD, AND MACHINE LEARNING PROGRAM
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T03%3A18%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=KIDA%20Shingo&rft.date=2024-07-31&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EEP4303773A4%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true