EXTREME CLASSIFICATION PROCESSING USING GRAPHS AND NEURAL NETWORKS

Systems and methods are provided for learning classifiers for annotating a document with predicted labels under extreme classification where there are over a million labels. The learning includes receiving a joint graph including documents and labels as nodes. Multi-dimensional vector representation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: JAIN, Arnav Kumar, JIAO, Jian, SINGH, Amit Kumar Rambachan, SAINI, Deepak, VARMA, Manik, ZHANG, Ruofei, DAVE, Kushal
Format: Patent
Sprache:eng ; fre ; ger
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator JAIN, Arnav Kumar
JIAO, Jian
SINGH, Amit Kumar Rambachan
SAINI, Deepak
VARMA, Manik
ZHANG, Ruofei
DAVE, Kushal
description Systems and methods are provided for learning classifiers for annotating a document with predicted labels under extreme classification where there are over a million labels. The learning includes receiving a joint graph including documents and labels as nodes. Multi-dimensional vector representations of a document (i.e., document representations) are generated based on graph convolution of the joint graph. Each document representation varies an extent of reliance on neighboring nodes to accommodate context. The document representations are feature-transformed using a residual layer. Per-label document representations are generated from the transformed document representations based on neighboring label attention. A classifier is trained for each of over a million labels based on joint learning using training data and the per-label document representation. The trained classifier performs highly efficiently as compared to other classifiers trained using disjoint graphs of documents and labels.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_EP4298554A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EP4298554A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_EP4298554A13</originalsourceid><addsrcrecordid>eNrjZHByjQgJcvV1VXD2cQwO9nTzdHYM8fT3UwgI8nd2BQr4uSuEgkn3IMcAj2AFRz8XBT_X0CBHHyAVEu4f5B3Mw8CalphTnMoLpbkZFNxcQ5w9dFML8uNTiwsSk1PzUkviXQNMjCwtTE1NHA2NiVACANymK0A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>EXTREME CLASSIFICATION PROCESSING USING GRAPHS AND NEURAL NETWORKS</title><source>esp@cenet</source><creator>JAIN, Arnav Kumar ; JIAO, Jian ; SINGH, Amit Kumar Rambachan ; SAINI, Deepak ; VARMA, Manik ; ZHANG, Ruofei ; DAVE, Kushal</creator><creatorcontrib>JAIN, Arnav Kumar ; JIAO, Jian ; SINGH, Amit Kumar Rambachan ; SAINI, Deepak ; VARMA, Manik ; ZHANG, Ruofei ; DAVE, Kushal</creatorcontrib><description>Systems and methods are provided for learning classifiers for annotating a document with predicted labels under extreme classification where there are over a million labels. The learning includes receiving a joint graph including documents and labels as nodes. Multi-dimensional vector representations of a document (i.e., document representations) are generated based on graph convolution of the joint graph. Each document representation varies an extent of reliance on neighboring nodes to accommodate context. The document representations are feature-transformed using a residual layer. Per-label document representations are generated from the transformed document representations based on neighboring label attention. A classifier is trained for each of over a million labels based on joint learning using training data and the per-label document representation. The trained classifier performs highly efficiently as compared to other classifiers trained using disjoint graphs of documents and labels.</description><language>eng ; fre ; ger</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240103&amp;DB=EPODOC&amp;CC=EP&amp;NR=4298554A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240103&amp;DB=EPODOC&amp;CC=EP&amp;NR=4298554A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>JAIN, Arnav Kumar</creatorcontrib><creatorcontrib>JIAO, Jian</creatorcontrib><creatorcontrib>SINGH, Amit Kumar Rambachan</creatorcontrib><creatorcontrib>SAINI, Deepak</creatorcontrib><creatorcontrib>VARMA, Manik</creatorcontrib><creatorcontrib>ZHANG, Ruofei</creatorcontrib><creatorcontrib>DAVE, Kushal</creatorcontrib><title>EXTREME CLASSIFICATION PROCESSING USING GRAPHS AND NEURAL NETWORKS</title><description>Systems and methods are provided for learning classifiers for annotating a document with predicted labels under extreme classification where there are over a million labels. The learning includes receiving a joint graph including documents and labels as nodes. Multi-dimensional vector representations of a document (i.e., document representations) are generated based on graph convolution of the joint graph. Each document representation varies an extent of reliance on neighboring nodes to accommodate context. The document representations are feature-transformed using a residual layer. Per-label document representations are generated from the transformed document representations based on neighboring label attention. A classifier is trained for each of over a million labels based on joint learning using training data and the per-label document representation. The trained classifier performs highly efficiently as compared to other classifiers trained using disjoint graphs of documents and labels.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZHByjQgJcvV1VXD2cQwO9nTzdHYM8fT3UwgI8nd2BQr4uSuEgkn3IMcAj2AFRz8XBT_X0CBHHyAVEu4f5B3Mw8CalphTnMoLpbkZFNxcQ5w9dFML8uNTiwsSk1PzUkviXQNMjCwtTE1NHA2NiVACANymK0A</recordid><startdate>20240103</startdate><enddate>20240103</enddate><creator>JAIN, Arnav Kumar</creator><creator>JIAO, Jian</creator><creator>SINGH, Amit Kumar Rambachan</creator><creator>SAINI, Deepak</creator><creator>VARMA, Manik</creator><creator>ZHANG, Ruofei</creator><creator>DAVE, Kushal</creator><scope>EVB</scope></search><sort><creationdate>20240103</creationdate><title>EXTREME CLASSIFICATION PROCESSING USING GRAPHS AND NEURAL NETWORKS</title><author>JAIN, Arnav Kumar ; JIAO, Jian ; SINGH, Amit Kumar Rambachan ; SAINI, Deepak ; VARMA, Manik ; ZHANG, Ruofei ; DAVE, Kushal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_EP4298554A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng ; fre ; ger</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>JAIN, Arnav Kumar</creatorcontrib><creatorcontrib>JIAO, Jian</creatorcontrib><creatorcontrib>SINGH, Amit Kumar Rambachan</creatorcontrib><creatorcontrib>SAINI, Deepak</creatorcontrib><creatorcontrib>VARMA, Manik</creatorcontrib><creatorcontrib>ZHANG, Ruofei</creatorcontrib><creatorcontrib>DAVE, Kushal</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>JAIN, Arnav Kumar</au><au>JIAO, Jian</au><au>SINGH, Amit Kumar Rambachan</au><au>SAINI, Deepak</au><au>VARMA, Manik</au><au>ZHANG, Ruofei</au><au>DAVE, Kushal</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>EXTREME CLASSIFICATION PROCESSING USING GRAPHS AND NEURAL NETWORKS</title><date>2024-01-03</date><risdate>2024</risdate><abstract>Systems and methods are provided for learning classifiers for annotating a document with predicted labels under extreme classification where there are over a million labels. The learning includes receiving a joint graph including documents and labels as nodes. Multi-dimensional vector representations of a document (i.e., document representations) are generated based on graph convolution of the joint graph. Each document representation varies an extent of reliance on neighboring nodes to accommodate context. The document representations are feature-transformed using a residual layer. Per-label document representations are generated from the transformed document representations based on neighboring label attention. A classifier is trained for each of over a million labels based on joint learning using training data and the per-label document representation. The trained classifier performs highly efficiently as compared to other classifiers trained using disjoint graphs of documents and labels.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng ; fre ; ger
recordid cdi_epo_espacenet_EP4298554A1
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
PHYSICS
title EXTREME CLASSIFICATION PROCESSING USING GRAPHS AND NEURAL NETWORKS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T07%3A55%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=JAIN,%20Arnav%20Kumar&rft.date=2024-01-03&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EEP4298554A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true