MACHINE LEARNING APPLICATIONS TO IMPROVE ONLINE JOB LISTINGS

A system is designed to crawl known job listings web pages and extract the job listing URLs. A machine learning model is trained to recognize job listings and extract relevant information for the job listings. The model can separate multiple job listings on a single page. The machine learning model...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: KULKARNI, Parshu, KALLEPALLI, Bhanu Kishore, KUMAR, Jainendra, JANAPAREDDY, Venkata, KANNAM, Venkata Rao
Format: Patent
Sprache:eng ; fre ; ger
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator KULKARNI, Parshu
KALLEPALLI, Bhanu Kishore
KUMAR, Jainendra
JANAPAREDDY, Venkata
KANNAM, Venkata Rao
description A system is designed to crawl known job listings web pages and extract the job listing URLs. A machine learning model is trained to recognize job listings and extract relevant information for the job listings. The model can separate multiple job listings on a single page. The machine learning model can further predict the likelihood of new jobs being added or existing job postings expiring. By using the prediction, the system can subsequently verify that a job expected to expire has expired and remove the same from the results. Similarly, the system can crawl websites with a high likelihood of new job postings without having to crawl the entire internet to maintain an up to date job listing repository.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_EP4288876A4</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EP4288876A4</sourcerecordid><originalsourceid>FETCH-epo_espacenet_EP4288876A43</originalsourceid><addsrcrecordid>eNrjZLDxdXT28PRzVfBxdQzy8_RzV3AMCPDxdHYM8fT3C1YI8Vfw9A0I8g9zVfD38wGp8_J3UvDxDA4BKg3mYWBNS8wpTuWF0twMCm6uIc4euqkF-fGpxQWJyal5qSXxrgEmRhYWFuZmjibGRCgBAL-_KWU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>MACHINE LEARNING APPLICATIONS TO IMPROVE ONLINE JOB LISTINGS</title><source>esp@cenet</source><creator>KULKARNI, Parshu ; KALLEPALLI, Bhanu Kishore ; KUMAR, Jainendra ; JANAPAREDDY, Venkata ; KANNAM, Venkata Rao</creator><creatorcontrib>KULKARNI, Parshu ; KALLEPALLI, Bhanu Kishore ; KUMAR, Jainendra ; JANAPAREDDY, Venkata ; KANNAM, Venkata Rao</creatorcontrib><description>A system is designed to crawl known job listings web pages and extract the job listing URLs. A machine learning model is trained to recognize job listings and extract relevant information for the job listings. The model can separate multiple job listings on a single page. The machine learning model can further predict the likelihood of new jobs being added or existing job postings expiring. By using the prediction, the system can subsequently verify that a job expected to expire has expired and remove the same from the results. Similarly, the system can crawl websites with a high likelihood of new job postings without having to crawl the entire internet to maintain an up to date job listing repository.</description><language>eng ; fre ; ger</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS ; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20241106&amp;DB=EPODOC&amp;CC=EP&amp;NR=4288876A4$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76290</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20241106&amp;DB=EPODOC&amp;CC=EP&amp;NR=4288876A4$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>KULKARNI, Parshu</creatorcontrib><creatorcontrib>KALLEPALLI, Bhanu Kishore</creatorcontrib><creatorcontrib>KUMAR, Jainendra</creatorcontrib><creatorcontrib>JANAPAREDDY, Venkata</creatorcontrib><creatorcontrib>KANNAM, Venkata Rao</creatorcontrib><title>MACHINE LEARNING APPLICATIONS TO IMPROVE ONLINE JOB LISTINGS</title><description>A system is designed to crawl known job listings web pages and extract the job listing URLs. A machine learning model is trained to recognize job listings and extract relevant information for the job listings. The model can separate multiple job listings on a single page. The machine learning model can further predict the likelihood of new jobs being added or existing job postings expiring. By using the prediction, the system can subsequently verify that a job expected to expire has expired and remove the same from the results. Similarly, the system can crawl websites with a high likelihood of new job postings without having to crawl the entire internet to maintain an up to date job listing repository.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><subject>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZLDxdXT28PRzVfBxdQzy8_RzV3AMCPDxdHYM8fT3C1YI8Vfw9A0I8g9zVfD38wGp8_J3UvDxDA4BKg3mYWBNS8wpTuWF0twMCm6uIc4euqkF-fGpxQWJyal5qSXxrgEmRhYWFuZmjibGRCgBAL-_KWU</recordid><startdate>20241106</startdate><enddate>20241106</enddate><creator>KULKARNI, Parshu</creator><creator>KALLEPALLI, Bhanu Kishore</creator><creator>KUMAR, Jainendra</creator><creator>JANAPAREDDY, Venkata</creator><creator>KANNAM, Venkata Rao</creator><scope>EVB</scope></search><sort><creationdate>20241106</creationdate><title>MACHINE LEARNING APPLICATIONS TO IMPROVE ONLINE JOB LISTINGS</title><author>KULKARNI, Parshu ; KALLEPALLI, Bhanu Kishore ; KUMAR, Jainendra ; JANAPAREDDY, Venkata ; KANNAM, Venkata Rao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_EP4288876A43</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng ; fre ; ger</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><topic>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</topic><toplevel>online_resources</toplevel><creatorcontrib>KULKARNI, Parshu</creatorcontrib><creatorcontrib>KALLEPALLI, Bhanu Kishore</creatorcontrib><creatorcontrib>KUMAR, Jainendra</creatorcontrib><creatorcontrib>JANAPAREDDY, Venkata</creatorcontrib><creatorcontrib>KANNAM, Venkata Rao</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>KULKARNI, Parshu</au><au>KALLEPALLI, Bhanu Kishore</au><au>KUMAR, Jainendra</au><au>JANAPAREDDY, Venkata</au><au>KANNAM, Venkata Rao</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>MACHINE LEARNING APPLICATIONS TO IMPROVE ONLINE JOB LISTINGS</title><date>2024-11-06</date><risdate>2024</risdate><abstract>A system is designed to crawl known job listings web pages and extract the job listing URLs. A machine learning model is trained to recognize job listings and extract relevant information for the job listings. The model can separate multiple job listings on a single page. The machine learning model can further predict the likelihood of new jobs being added or existing job postings expiring. By using the prediction, the system can subsequently verify that a job expected to expire has expired and remove the same from the results. Similarly, the system can crawl websites with a high likelihood of new job postings without having to crawl the entire internet to maintain an up to date job listing repository.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng ; fre ; ger
recordid cdi_epo_espacenet_EP4288876A4
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR
title MACHINE LEARNING APPLICATIONS TO IMPROVE ONLINE JOB LISTINGS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T00%3A12%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=KULKARNI,%20Parshu&rft.date=2024-11-06&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EEP4288876A4%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true