TITANIUM ALLOY THIN PLATE, AND METHOD FOR PRODUCING TITANIUM ALLOY THIN PLATE
A titanium alloy thin sheet according to the present disclosure contains specific chemical components, in which, when a crystal orientation of an α-phase is expressed by an Euler angle g={ϕ1,Φ,ϕ2} according to Bunge's notation method, the orientation with maximum intensity expressed by a crysta...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Patent |
Sprache: | eng ; fre ; ger |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | OKUI, Toshiyuki TSUKAMOTO, Genki KOIKE, Yoshiki KUNIEDA, Tomonori TAKEBE, Hidenori |
description | A titanium alloy thin sheet according to the present disclosure contains specific chemical components, in which, when a crystal orientation of an α-phase is expressed by an Euler angle g={ϕ1,Φ,ϕ2} according to Bunge's notation method, the orientation with maximum intensity expressed by a crystal orientation distribution function f(g) calculated with Series Rank of 16 and a Gaussian half width of 5° in texture analysis using a spherical harmonics method of an electron backscatter diffraction method is in the range of ϕ1: 0 to 30°, Φ: 60 to 90°, and ϕ2: 0 to 60°, and a degree of accumulation of the orientation with maximum intensity is 10.0 or more, a 0.2% proof stress in a sheet width direction at 25°C is 800 MPa or more, a Young's modulus in the sheet width direction is 125 GPa or more, and an average sheet thickness is 2.5 mm or less. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_EP4286550A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EP4286550A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_EP4286550A13</originalsourceid><addsrcrecordid>eNrjZPAN8Qxx9PMM9VVw9PHxj1QI8fD0UwjwcQxx1VFw9HNR8HUN8fB3UXDzD1IICPJ3CXX29HNXwKmHh4E1LTGnOJUXSnMzKLi5hjh76KYW5MenFhckJqfmpZbEuwaYGFmYmZoaOBoaE6EEAH2VLbQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>TITANIUM ALLOY THIN PLATE, AND METHOD FOR PRODUCING TITANIUM ALLOY THIN PLATE</title><source>esp@cenet</source><creator>OKUI, Toshiyuki ; TSUKAMOTO, Genki ; KOIKE, Yoshiki ; KUNIEDA, Tomonori ; TAKEBE, Hidenori</creator><creatorcontrib>OKUI, Toshiyuki ; TSUKAMOTO, Genki ; KOIKE, Yoshiki ; KUNIEDA, Tomonori ; TAKEBE, Hidenori</creatorcontrib><description>A titanium alloy thin sheet according to the present disclosure contains specific chemical components, in which, when a crystal orientation of an α-phase is expressed by an Euler angle g={ϕ1,Φ,ϕ2} according to Bunge's notation method, the orientation with maximum intensity expressed by a crystal orientation distribution function f(g) calculated with Series Rank of 16 and a Gaussian half width of 5° in texture analysis using a spherical harmonics method of an electron backscatter diffraction method is in the range of ϕ1: 0 to 30°, Φ: 60 to 90°, and ϕ2: 0 to 60°, and a degree of accumulation of the orientation with maximum intensity is 10.0 or more, a 0.2% proof stress in a sheet width direction at 25°C is 800 MPa or more, a Young's modulus in the sheet width direction is 125 GPa or more, and an average sheet thickness is 2.5 mm or less.</description><language>eng ; fre ; ger</language><subject>ALLOYS ; CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS ANDNON-FERROUS ALLOYS ; CHEMISTRY ; FERROUS OR NON-FERROUS ALLOYS ; METALLURGY ; TREATMENT OF ALLOYS OR NON-FERROUS METALS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20231206&DB=EPODOC&CC=EP&NR=4286550A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20231206&DB=EPODOC&CC=EP&NR=4286550A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>OKUI, Toshiyuki</creatorcontrib><creatorcontrib>TSUKAMOTO, Genki</creatorcontrib><creatorcontrib>KOIKE, Yoshiki</creatorcontrib><creatorcontrib>KUNIEDA, Tomonori</creatorcontrib><creatorcontrib>TAKEBE, Hidenori</creatorcontrib><title>TITANIUM ALLOY THIN PLATE, AND METHOD FOR PRODUCING TITANIUM ALLOY THIN PLATE</title><description>A titanium alloy thin sheet according to the present disclosure contains specific chemical components, in which, when a crystal orientation of an α-phase is expressed by an Euler angle g={ϕ1,Φ,ϕ2} according to Bunge's notation method, the orientation with maximum intensity expressed by a crystal orientation distribution function f(g) calculated with Series Rank of 16 and a Gaussian half width of 5° in texture analysis using a spherical harmonics method of an electron backscatter diffraction method is in the range of ϕ1: 0 to 30°, Φ: 60 to 90°, and ϕ2: 0 to 60°, and a degree of accumulation of the orientation with maximum intensity is 10.0 or more, a 0.2% proof stress in a sheet width direction at 25°C is 800 MPa or more, a Young's modulus in the sheet width direction is 125 GPa or more, and an average sheet thickness is 2.5 mm or less.</description><subject>ALLOYS</subject><subject>CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS ANDNON-FERROUS ALLOYS</subject><subject>CHEMISTRY</subject><subject>FERROUS OR NON-FERROUS ALLOYS</subject><subject>METALLURGY</subject><subject>TREATMENT OF ALLOYS OR NON-FERROUS METALS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZPAN8Qxx9PMM9VVw9PHxj1QI8fD0UwjwcQxx1VFw9HNR8HUN8fB3UXDzD1IICPJ3CXX29HNXwKmHh4E1LTGnOJUXSnMzKLi5hjh76KYW5MenFhckJqfmpZbEuwaYGFmYmZoaOBoaE6EEAH2VLbQ</recordid><startdate>20231206</startdate><enddate>20231206</enddate><creator>OKUI, Toshiyuki</creator><creator>TSUKAMOTO, Genki</creator><creator>KOIKE, Yoshiki</creator><creator>KUNIEDA, Tomonori</creator><creator>TAKEBE, Hidenori</creator><scope>EVB</scope></search><sort><creationdate>20231206</creationdate><title>TITANIUM ALLOY THIN PLATE, AND METHOD FOR PRODUCING TITANIUM ALLOY THIN PLATE</title><author>OKUI, Toshiyuki ; TSUKAMOTO, Genki ; KOIKE, Yoshiki ; KUNIEDA, Tomonori ; TAKEBE, Hidenori</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_EP4286550A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng ; fre ; ger</language><creationdate>2023</creationdate><topic>ALLOYS</topic><topic>CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS ANDNON-FERROUS ALLOYS</topic><topic>CHEMISTRY</topic><topic>FERROUS OR NON-FERROUS ALLOYS</topic><topic>METALLURGY</topic><topic>TREATMENT OF ALLOYS OR NON-FERROUS METALS</topic><toplevel>online_resources</toplevel><creatorcontrib>OKUI, Toshiyuki</creatorcontrib><creatorcontrib>TSUKAMOTO, Genki</creatorcontrib><creatorcontrib>KOIKE, Yoshiki</creatorcontrib><creatorcontrib>KUNIEDA, Tomonori</creatorcontrib><creatorcontrib>TAKEBE, Hidenori</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>OKUI, Toshiyuki</au><au>TSUKAMOTO, Genki</au><au>KOIKE, Yoshiki</au><au>KUNIEDA, Tomonori</au><au>TAKEBE, Hidenori</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>TITANIUM ALLOY THIN PLATE, AND METHOD FOR PRODUCING TITANIUM ALLOY THIN PLATE</title><date>2023-12-06</date><risdate>2023</risdate><abstract>A titanium alloy thin sheet according to the present disclosure contains specific chemical components, in which, when a crystal orientation of an α-phase is expressed by an Euler angle g={ϕ1,Φ,ϕ2} according to Bunge's notation method, the orientation with maximum intensity expressed by a crystal orientation distribution function f(g) calculated with Series Rank of 16 and a Gaussian half width of 5° in texture analysis using a spherical harmonics method of an electron backscatter diffraction method is in the range of ϕ1: 0 to 30°, Φ: 60 to 90°, and ϕ2: 0 to 60°, and a degree of accumulation of the orientation with maximum intensity is 10.0 or more, a 0.2% proof stress in a sheet width direction at 25°C is 800 MPa or more, a Young's modulus in the sheet width direction is 125 GPa or more, and an average sheet thickness is 2.5 mm or less.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng ; fre ; ger |
recordid | cdi_epo_espacenet_EP4286550A1 |
source | esp@cenet |
subjects | ALLOYS CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS ANDNON-FERROUS ALLOYS CHEMISTRY FERROUS OR NON-FERROUS ALLOYS METALLURGY TREATMENT OF ALLOYS OR NON-FERROUS METALS |
title | TITANIUM ALLOY THIN PLATE, AND METHOD FOR PRODUCING TITANIUM ALLOY THIN PLATE |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T01%3A25%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=OKUI,%20Toshiyuki&rft.date=2023-12-06&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EEP4286550A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |