TWO-STAGE SAMPLING FOR ACCELERATED DEFORMULATION GENERATION
A device receives an ingredient list having a sequence of ingredients ordered by relative amount, and generates formulation vectors by sampling the ingredients list. The device inputs the plurality of formulation vectors into a machine-learned model, the machine-learned model generating an encoded v...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Patent |
Sprache: | eng ; fre ; ger |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | LING, Julia, Black FOLIE, Brendan, David SEVGEN, Selami, Emre |
description | A device receives an ingredient list having a sequence of ingredients ordered by relative amount, and generates formulation vectors by sampling the ingredients list. The device inputs the plurality of formulation vectors into a machine-learned model, the machine-learned model generating an encoded version of each of the plurality of formulation vectors using an encoder, and then outputting a plurality of reconstructed formulation vectors as derived using a decoder. The device identifies reconstructed formulation vectors that have an order that matches the sequence, defines a latent space using the encoded version of the matching reconstructed formulation vectors. The device iteratively samples the latent space until a threshold number of samples are derived that match an ordering constraint that corresponds to the sequence, performs a statistical aggregation of the samples, and outputs an indication of an absolute amount of each ingredient in the ingredients list. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_EP4285371A4</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EP4285371A4</sourcerecordid><originalsourceid>FETCH-epo_espacenet_EP4285371A43</originalsourceid><addsrcrecordid>eNrjZLAOCffXDQ5xdHdVCHb0DfDx9HNXcPMPUnB0dnb1cQ1yDHF1UXBxBYr4hvo4hnj6-ym4u_qBxIFMHgbWtMSc4lReKM3NoODmGuLsoZtakB-fWlyQmJyal1oS7xpgYmRhamxu6GhiTIQSAJ5wKRs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>TWO-STAGE SAMPLING FOR ACCELERATED DEFORMULATION GENERATION</title><source>esp@cenet</source><creator>LING, Julia, Black ; FOLIE, Brendan, David ; SEVGEN, Selami, Emre</creator><creatorcontrib>LING, Julia, Black ; FOLIE, Brendan, David ; SEVGEN, Selami, Emre</creatorcontrib><description>A device receives an ingredient list having a sequence of ingredients ordered by relative amount, and generates formulation vectors by sampling the ingredients list. The device inputs the plurality of formulation vectors into a machine-learned model, the machine-learned model generating an encoded version of each of the plurality of formulation vectors using an encoder, and then outputting a plurality of reconstructed formulation vectors as derived using a decoder. The device identifies reconstructed formulation vectors that have an order that matches the sequence, defines a latent space using the encoded version of the matching reconstructed formulation vectors. The device iteratively samples the latent space until a threshold number of samples are derived that match an ordering constraint that corresponds to the sequence, performs a statistical aggregation of the samples, and outputs an indication of an absolute amount of each ingredient in the ingredients list.</description><language>eng ; fre ; ger</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20241225&DB=EPODOC&CC=EP&NR=4285371A4$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,778,883,25553,76306</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20241225&DB=EPODOC&CC=EP&NR=4285371A4$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>LING, Julia, Black</creatorcontrib><creatorcontrib>FOLIE, Brendan, David</creatorcontrib><creatorcontrib>SEVGEN, Selami, Emre</creatorcontrib><title>TWO-STAGE SAMPLING FOR ACCELERATED DEFORMULATION GENERATION</title><description>A device receives an ingredient list having a sequence of ingredients ordered by relative amount, and generates formulation vectors by sampling the ingredients list. The device inputs the plurality of formulation vectors into a machine-learned model, the machine-learned model generating an encoded version of each of the plurality of formulation vectors using an encoder, and then outputting a plurality of reconstructed formulation vectors as derived using a decoder. The device identifies reconstructed formulation vectors that have an order that matches the sequence, defines a latent space using the encoded version of the matching reconstructed formulation vectors. The device iteratively samples the latent space until a threshold number of samples are derived that match an ordering constraint that corresponds to the sequence, performs a statistical aggregation of the samples, and outputs an indication of an absolute amount of each ingredient in the ingredients list.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZLAOCffXDQ5xdHdVCHb0DfDx9HNXcPMPUnB0dnb1cQ1yDHF1UXBxBYr4hvo4hnj6-ym4u_qBxIFMHgbWtMSc4lReKM3NoODmGuLsoZtakB-fWlyQmJyal1oS7xpgYmRhamxu6GhiTIQSAJ5wKRs</recordid><startdate>20241225</startdate><enddate>20241225</enddate><creator>LING, Julia, Black</creator><creator>FOLIE, Brendan, David</creator><creator>SEVGEN, Selami, Emre</creator><scope>EVB</scope></search><sort><creationdate>20241225</creationdate><title>TWO-STAGE SAMPLING FOR ACCELERATED DEFORMULATION GENERATION</title><author>LING, Julia, Black ; FOLIE, Brendan, David ; SEVGEN, Selami, Emre</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_EP4285371A43</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng ; fre ; ger</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>LING, Julia, Black</creatorcontrib><creatorcontrib>FOLIE, Brendan, David</creatorcontrib><creatorcontrib>SEVGEN, Selami, Emre</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>LING, Julia, Black</au><au>FOLIE, Brendan, David</au><au>SEVGEN, Selami, Emre</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>TWO-STAGE SAMPLING FOR ACCELERATED DEFORMULATION GENERATION</title><date>2024-12-25</date><risdate>2024</risdate><abstract>A device receives an ingredient list having a sequence of ingredients ordered by relative amount, and generates formulation vectors by sampling the ingredients list. The device inputs the plurality of formulation vectors into a machine-learned model, the machine-learned model generating an encoded version of each of the plurality of formulation vectors using an encoder, and then outputting a plurality of reconstructed formulation vectors as derived using a decoder. The device identifies reconstructed formulation vectors that have an order that matches the sequence, defines a latent space using the encoded version of the matching reconstructed formulation vectors. The device iteratively samples the latent space until a threshold number of samples are derived that match an ordering constraint that corresponds to the sequence, performs a statistical aggregation of the samples, and outputs an indication of an absolute amount of each ingredient in the ingredients list.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng ; fre ; ger |
recordid | cdi_epo_espacenet_EP4285371A4 |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING ELECTRIC DIGITAL DATA PROCESSING INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS PHYSICS |
title | TWO-STAGE SAMPLING FOR ACCELERATED DEFORMULATION GENERATION |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T09%3A09%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=LING,%20Julia,%20Black&rft.date=2024-12-25&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EEP4285371A4%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |