SYSTEM AND METHOD USING PYRAMIDAL AND UNIQUENESS MATCHING PRIORS FOR IDENTIFYING CORRESPONDENCES BETWEEN IMAGES
A method of unsupervised neural network training for learning of local image descriptors is provided. A pair of images depicting a same scene is obtained. The pair of images includes a first image with a first pixel grid and a second image with a second pixel grid, wherein the first pixel grid diffe...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Patent |
Sprache: | eng ; fre ; ger |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | WEINZAEPFEL, Philippe LEROY, Vincent CHIDLOVSKII, Boris REVAUD, Jérôme |
description | A method of unsupervised neural network training for learning of local image descriptors is provided. A pair of images depicting a same scene is obtained. The pair of images includes a first image with a first pixel grid and a second image with a second pixel grid, wherein the first pixel grid differs from the second pixel grid. A neural network with an initial set of parameters is applied to the first image and the second image to generate feature maps F1 and F2. Each feature map comprises a grid of local image descriptors. An initial correlation volume C0 is determined based on F1 and F2. Based on C0, a high-level correlation volume CL is determined by iterative pyramid construction. CL comprises aggregated high-level correlations between iteratively constructed high-level patches of the first and second pixel grids. A uniqueness matching loss for F1 and F2 is determined based on CL. The neural network is trained by minimizing a loss function based on the uniqueness matching loss to generate an optimized set of parameters, thereby generating a trained neural network for determining optimal local image descriptors. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_EP4254354A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EP4254354A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_EP4254354A13</originalsourceid><addsrcrecordid>eNqNjEEOgjAQRdm4MOod5gIuFDhApQNMYqfYaUNYEWLqyggJ3j8i8QCufvL-y9smo3Ti0YBiDQZ9bTUEIa6g6ZwypNV1vQLTLSCjCBjli3o1HFknUFoHpJE9ld0XF9Y5lMbywgoUuKBvERnIqApln2wew3OOh9_uEihxCR7jNPZxnoZ7fMV3j012zrM0z9Qp_UP5AGuzN5E</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>SYSTEM AND METHOD USING PYRAMIDAL AND UNIQUENESS MATCHING PRIORS FOR IDENTIFYING CORRESPONDENCES BETWEEN IMAGES</title><source>esp@cenet</source><creator>WEINZAEPFEL, Philippe ; LEROY, Vincent ; CHIDLOVSKII, Boris ; REVAUD, Jérôme</creator><creatorcontrib>WEINZAEPFEL, Philippe ; LEROY, Vincent ; CHIDLOVSKII, Boris ; REVAUD, Jérôme</creatorcontrib><description>A method of unsupervised neural network training for learning of local image descriptors is provided. A pair of images depicting a same scene is obtained. The pair of images includes a first image with a first pixel grid and a second image with a second pixel grid, wherein the first pixel grid differs from the second pixel grid. A neural network with an initial set of parameters is applied to the first image and the second image to generate feature maps F1 and F2. Each feature map comprises a grid of local image descriptors. An initial correlation volume C0 is determined based on F1 and F2. Based on C0, a high-level correlation volume CL is determined by iterative pyramid construction. CL comprises aggregated high-level correlations between iteratively constructed high-level patches of the first and second pixel grids. A uniqueness matching loss for F1 and F2 is determined based on CL. The neural network is trained by minimizing a loss function based on the uniqueness matching loss to generate an optimized set of parameters, thereby generating a trained neural network for determining optimal local image descriptors.</description><language>eng ; fre ; ger</language><subject>CALCULATING ; COMPUTING ; COUNTING ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20231004&DB=EPODOC&CC=EP&NR=4254354A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,778,883,25547,76298</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20231004&DB=EPODOC&CC=EP&NR=4254354A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>WEINZAEPFEL, Philippe</creatorcontrib><creatorcontrib>LEROY, Vincent</creatorcontrib><creatorcontrib>CHIDLOVSKII, Boris</creatorcontrib><creatorcontrib>REVAUD, Jérôme</creatorcontrib><title>SYSTEM AND METHOD USING PYRAMIDAL AND UNIQUENESS MATCHING PRIORS FOR IDENTIFYING CORRESPONDENCES BETWEEN IMAGES</title><description>A method of unsupervised neural network training for learning of local image descriptors is provided. A pair of images depicting a same scene is obtained. The pair of images includes a first image with a first pixel grid and a second image with a second pixel grid, wherein the first pixel grid differs from the second pixel grid. A neural network with an initial set of parameters is applied to the first image and the second image to generate feature maps F1 and F2. Each feature map comprises a grid of local image descriptors. An initial correlation volume C0 is determined based on F1 and F2. Based on C0, a high-level correlation volume CL is determined by iterative pyramid construction. CL comprises aggregated high-level correlations between iteratively constructed high-level patches of the first and second pixel grids. A uniqueness matching loss for F1 and F2 is determined based on CL. The neural network is trained by minimizing a loss function based on the uniqueness matching loss to generate an optimized set of parameters, thereby generating a trained neural network for determining optimal local image descriptors.</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjEEOgjAQRdm4MOod5gIuFDhApQNMYqfYaUNYEWLqyggJ3j8i8QCufvL-y9smo3Ti0YBiDQZ9bTUEIa6g6ZwypNV1vQLTLSCjCBjli3o1HFknUFoHpJE9ld0XF9Y5lMbywgoUuKBvERnIqApln2wew3OOh9_uEihxCR7jNPZxnoZ7fMV3j012zrM0z9Qp_UP5AGuzN5E</recordid><startdate>20231004</startdate><enddate>20231004</enddate><creator>WEINZAEPFEL, Philippe</creator><creator>LEROY, Vincent</creator><creator>CHIDLOVSKII, Boris</creator><creator>REVAUD, Jérôme</creator><scope>EVB</scope></search><sort><creationdate>20231004</creationdate><title>SYSTEM AND METHOD USING PYRAMIDAL AND UNIQUENESS MATCHING PRIORS FOR IDENTIFYING CORRESPONDENCES BETWEEN IMAGES</title><author>WEINZAEPFEL, Philippe ; LEROY, Vincent ; CHIDLOVSKII, Boris ; REVAUD, Jérôme</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_EP4254354A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng ; fre ; ger</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>WEINZAEPFEL, Philippe</creatorcontrib><creatorcontrib>LEROY, Vincent</creatorcontrib><creatorcontrib>CHIDLOVSKII, Boris</creatorcontrib><creatorcontrib>REVAUD, Jérôme</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>WEINZAEPFEL, Philippe</au><au>LEROY, Vincent</au><au>CHIDLOVSKII, Boris</au><au>REVAUD, Jérôme</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>SYSTEM AND METHOD USING PYRAMIDAL AND UNIQUENESS MATCHING PRIORS FOR IDENTIFYING CORRESPONDENCES BETWEEN IMAGES</title><date>2023-10-04</date><risdate>2023</risdate><abstract>A method of unsupervised neural network training for learning of local image descriptors is provided. A pair of images depicting a same scene is obtained. The pair of images includes a first image with a first pixel grid and a second image with a second pixel grid, wherein the first pixel grid differs from the second pixel grid. A neural network with an initial set of parameters is applied to the first image and the second image to generate feature maps F1 and F2. Each feature map comprises a grid of local image descriptors. An initial correlation volume C0 is determined based on F1 and F2. Based on C0, a high-level correlation volume CL is determined by iterative pyramid construction. CL comprises aggregated high-level correlations between iteratively constructed high-level patches of the first and second pixel grids. A uniqueness matching loss for F1 and F2 is determined based on CL. The neural network is trained by minimizing a loss function based on the uniqueness matching loss to generate an optimized set of parameters, thereby generating a trained neural network for determining optimal local image descriptors.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng ; fre ; ger |
recordid | cdi_epo_espacenet_EP4254354A1 |
source | esp@cenet |
subjects | CALCULATING COMPUTING COUNTING IMAGE DATA PROCESSING OR GENERATION, IN GENERAL PHYSICS |
title | SYSTEM AND METHOD USING PYRAMIDAL AND UNIQUENESS MATCHING PRIORS FOR IDENTIFYING CORRESPONDENCES BETWEEN IMAGES |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T15%3A22%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=WEINZAEPFEL,%20Philippe&rft.date=2023-10-04&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EEP4254354A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |