COOLING PASSAGE EXIT OPENING CROSS-SECTIONAL AREA REDUCTION FOR TURBINE SYSTEM COMPONENT

A turbine system component (200) includes a body (210) having an exterior surface (212), and a cooling passage (202) defined in the body (210). The cooling passage (202) has a first cross-sectional area in the body (210). The component (200) also includes a hollow member (220) defining a first exit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: LEWIS, Kyle J, LUCKING, Caitlin Shea, YERKES, Patrick, DORRIETY, Daniel J
Format: Patent
Sprache:eng ; fre ; ger
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator LEWIS, Kyle J
LUCKING, Caitlin Shea
YERKES, Patrick
DORRIETY, Daniel J
description A turbine system component (200) includes a body (210) having an exterior surface (212), and a cooling passage (202) defined in the body (210). The cooling passage (202) has a first cross-sectional area in the body (210). The component (200) also includes a hollow member (220) defining a first exit opening (214) at the exterior surface (212) of the body (210) and coupled in the cooling passage (202). The hollow member (220), at the first exit opening (214), has a second cross-sectional area that is less than the first cross-sectional area, creating an exit opening (222) with a smaller dimension than the original cooling passage (202). The hollow member (220) is made of a material having a melt temperature higher than an operating temperature of the turbine system. The hollow member(s) (220) reduces the cooling capabilities of the cooling passage (202). A cooling profile of the component (200) can be generated to identify those cooling passages (202) having excess cooling so they can have their exit openings (214) reduced in cross-sectional area.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_EP4253723A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EP4253723A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_EP4253723A13</originalsourceid><addsrcrecordid>eNqNykEKwjAQQNFsXIh6h7lAFzaK6xinNdDOhMwU6qoUiSvRQr0_ongAVx8ef2l6z9wEqiE6EVcjYB8UOCJ90CcWKQS9BibXgEvoIOGp-wJUnEC7dAyEIBdRbMFzG5mQdG0Wt_E-582vKwMVqj8XeXoOeZ7Ga37k14BxV-7tobRua_9Y3rWJMSs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>COOLING PASSAGE EXIT OPENING CROSS-SECTIONAL AREA REDUCTION FOR TURBINE SYSTEM COMPONENT</title><source>esp@cenet</source><creator>LEWIS, Kyle J ; LUCKING, Caitlin Shea ; YERKES, Patrick ; DORRIETY, Daniel J</creator><creatorcontrib>LEWIS, Kyle J ; LUCKING, Caitlin Shea ; YERKES, Patrick ; DORRIETY, Daniel J</creatorcontrib><description>A turbine system component (200) includes a body (210) having an exterior surface (212), and a cooling passage (202) defined in the body (210). The cooling passage (202) has a first cross-sectional area in the body (210). The component (200) also includes a hollow member (220) defining a first exit opening (214) at the exterior surface (212) of the body (210) and coupled in the cooling passage (202). The hollow member (220), at the first exit opening (214), has a second cross-sectional area that is less than the first cross-sectional area, creating an exit opening (222) with a smaller dimension than the original cooling passage (202). The hollow member (220) is made of a material having a melt temperature higher than an operating temperature of the turbine system. The hollow member(s) (220) reduces the cooling capabilities of the cooling passage (202). A cooling profile of the component (200) can be generated to identify those cooling passages (202) having excess cooling so they can have their exit openings (214) reduced in cross-sectional area.</description><language>eng ; fre ; ger</language><subject>BLASTING ; COMBUSTION APPARATUS ; COMBUSTION PROCESSES ; ENGINE PLANTS IN GENERAL ; GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGHVELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS ; HEATING ; LIGHTING ; MACHINES OR ENGINES IN GENERAL ; MECHANICAL ENGINEERING ; NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAMTURBINES ; STEAM ENGINES ; WEAPONS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20231004&amp;DB=EPODOC&amp;CC=EP&amp;NR=4253723A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76289</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20231004&amp;DB=EPODOC&amp;CC=EP&amp;NR=4253723A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>LEWIS, Kyle J</creatorcontrib><creatorcontrib>LUCKING, Caitlin Shea</creatorcontrib><creatorcontrib>YERKES, Patrick</creatorcontrib><creatorcontrib>DORRIETY, Daniel J</creatorcontrib><title>COOLING PASSAGE EXIT OPENING CROSS-SECTIONAL AREA REDUCTION FOR TURBINE SYSTEM COMPONENT</title><description>A turbine system component (200) includes a body (210) having an exterior surface (212), and a cooling passage (202) defined in the body (210). The cooling passage (202) has a first cross-sectional area in the body (210). The component (200) also includes a hollow member (220) defining a first exit opening (214) at the exterior surface (212) of the body (210) and coupled in the cooling passage (202). The hollow member (220), at the first exit opening (214), has a second cross-sectional area that is less than the first cross-sectional area, creating an exit opening (222) with a smaller dimension than the original cooling passage (202). The hollow member (220) is made of a material having a melt temperature higher than an operating temperature of the turbine system. The hollow member(s) (220) reduces the cooling capabilities of the cooling passage (202). A cooling profile of the component (200) can be generated to identify those cooling passages (202) having excess cooling so they can have their exit openings (214) reduced in cross-sectional area.</description><subject>BLASTING</subject><subject>COMBUSTION APPARATUS</subject><subject>COMBUSTION PROCESSES</subject><subject>ENGINE PLANTS IN GENERAL</subject><subject>GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGHVELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS</subject><subject>HEATING</subject><subject>LIGHTING</subject><subject>MACHINES OR ENGINES IN GENERAL</subject><subject>MECHANICAL ENGINEERING</subject><subject>NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAMTURBINES</subject><subject>STEAM ENGINES</subject><subject>WEAPONS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNykEKwjAQQNFsXIh6h7lAFzaK6xinNdDOhMwU6qoUiSvRQr0_ongAVx8ef2l6z9wEqiE6EVcjYB8UOCJ90CcWKQS9BibXgEvoIOGp-wJUnEC7dAyEIBdRbMFzG5mQdG0Wt_E-582vKwMVqj8XeXoOeZ7Ga37k14BxV-7tobRua_9Y3rWJMSs</recordid><startdate>20231004</startdate><enddate>20231004</enddate><creator>LEWIS, Kyle J</creator><creator>LUCKING, Caitlin Shea</creator><creator>YERKES, Patrick</creator><creator>DORRIETY, Daniel J</creator><scope>EVB</scope></search><sort><creationdate>20231004</creationdate><title>COOLING PASSAGE EXIT OPENING CROSS-SECTIONAL AREA REDUCTION FOR TURBINE SYSTEM COMPONENT</title><author>LEWIS, Kyle J ; LUCKING, Caitlin Shea ; YERKES, Patrick ; DORRIETY, Daniel J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_EP4253723A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng ; fre ; ger</language><creationdate>2023</creationdate><topic>BLASTING</topic><topic>COMBUSTION APPARATUS</topic><topic>COMBUSTION PROCESSES</topic><topic>ENGINE PLANTS IN GENERAL</topic><topic>GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGHVELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS</topic><topic>HEATING</topic><topic>LIGHTING</topic><topic>MACHINES OR ENGINES IN GENERAL</topic><topic>MECHANICAL ENGINEERING</topic><topic>NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAMTURBINES</topic><topic>STEAM ENGINES</topic><topic>WEAPONS</topic><toplevel>online_resources</toplevel><creatorcontrib>LEWIS, Kyle J</creatorcontrib><creatorcontrib>LUCKING, Caitlin Shea</creatorcontrib><creatorcontrib>YERKES, Patrick</creatorcontrib><creatorcontrib>DORRIETY, Daniel J</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>LEWIS, Kyle J</au><au>LUCKING, Caitlin Shea</au><au>YERKES, Patrick</au><au>DORRIETY, Daniel J</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>COOLING PASSAGE EXIT OPENING CROSS-SECTIONAL AREA REDUCTION FOR TURBINE SYSTEM COMPONENT</title><date>2023-10-04</date><risdate>2023</risdate><abstract>A turbine system component (200) includes a body (210) having an exterior surface (212), and a cooling passage (202) defined in the body (210). The cooling passage (202) has a first cross-sectional area in the body (210). The component (200) also includes a hollow member (220) defining a first exit opening (214) at the exterior surface (212) of the body (210) and coupled in the cooling passage (202). The hollow member (220), at the first exit opening (214), has a second cross-sectional area that is less than the first cross-sectional area, creating an exit opening (222) with a smaller dimension than the original cooling passage (202). The hollow member (220) is made of a material having a melt temperature higher than an operating temperature of the turbine system. The hollow member(s) (220) reduces the cooling capabilities of the cooling passage (202). A cooling profile of the component (200) can be generated to identify those cooling passages (202) having excess cooling so they can have their exit openings (214) reduced in cross-sectional area.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng ; fre ; ger
recordid cdi_epo_espacenet_EP4253723A1
source esp@cenet
subjects BLASTING
COMBUSTION APPARATUS
COMBUSTION PROCESSES
ENGINE PLANTS IN GENERAL
GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGHVELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
HEATING
LIGHTING
MACHINES OR ENGINES IN GENERAL
MECHANICAL ENGINEERING
NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAMTURBINES
STEAM ENGINES
WEAPONS
title COOLING PASSAGE EXIT OPENING CROSS-SECTIONAL AREA REDUCTION FOR TURBINE SYSTEM COMPONENT
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T12%3A13%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=LEWIS,%20Kyle%20J&rft.date=2023-10-04&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EEP4253723A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true