HYBRID ARTIFICIAL INTELLIGENCE GENERATED ACTIONABLE RECOMMENDATIONS

A method implements hybrid artificial intelligence generated actionable recommendations. The method includes processing an event to identify an action of an event action set. The event includes an event value. The method further includes processing the event action set to generate an objective value...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: AGARWAL, Sudhir, SREEPATHY, Anu, FURBISH, Kevin Michael, MOUATADID, Lalla
Format: Patent
Sprache:eng ; fre ; ger
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator AGARWAL, Sudhir
SREEPATHY, Anu
FURBISH, Kevin Michael
MOUATADID, Lalla
description A method implements hybrid artificial intelligence generated actionable recommendations. The method includes processing an event to identify an action of an event action set. The event includes an event value. The method further includes processing the event action set to generate an objective value, corresponding to the action, and a probability, corresponding to the action, and to form a model action set from the event action set. The method further includes filtering the model action set using action rule data and rule user data to generate a filtered action set. The method further includes processing, using the objective value and the probability, the filtered action set with an optimization controller to generate suggested action sets from which a selected action set is selected. The selected action set corresponds to a combined action value that satisfies the event value.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_EP4246380A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EP4246380A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_EP4246380A13</originalsourceid><addsrcrecordid>eNrjZHD2iHQK8nRRcAwK8XTzdPZ09FHw9Atx9fHxdHf1c3ZVAJKuQY4hrkAVziGe_n6OTj6uCkGuzv6-vq5-Lo4goWAeBta0xJziVF4ozc2g4OYa4uyhm1qQH59aXJCYnJqXWhLvGmBiZGJmbGHgaGhMhBIA5zsrPg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>HYBRID ARTIFICIAL INTELLIGENCE GENERATED ACTIONABLE RECOMMENDATIONS</title><source>esp@cenet</source><creator>AGARWAL, Sudhir ; SREEPATHY, Anu ; FURBISH, Kevin Michael ; MOUATADID, Lalla</creator><creatorcontrib>AGARWAL, Sudhir ; SREEPATHY, Anu ; FURBISH, Kevin Michael ; MOUATADID, Lalla</creatorcontrib><description>A method implements hybrid artificial intelligence generated actionable recommendations. The method includes processing an event to identify an action of an event action set. The event includes an event value. The method further includes processing the event action set to generate an objective value, corresponding to the action, and a probability, corresponding to the action, and to form a model action set from the event action set. The method further includes filtering the model action set using action rule data and rule user data to generate a filtered action set. The method further includes processing, using the objective value and the probability, the filtered action set with an optimization controller to generate suggested action sets from which a selected action set is selected. The selected action set corresponds to a combined action value that satisfies the event value.</description><language>eng ; fre ; ger</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ; PHYSICS ; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230920&amp;DB=EPODOC&amp;CC=EP&amp;NR=4246380A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76290</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230920&amp;DB=EPODOC&amp;CC=EP&amp;NR=4246380A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>AGARWAL, Sudhir</creatorcontrib><creatorcontrib>SREEPATHY, Anu</creatorcontrib><creatorcontrib>FURBISH, Kevin Michael</creatorcontrib><creatorcontrib>MOUATADID, Lalla</creatorcontrib><title>HYBRID ARTIFICIAL INTELLIGENCE GENERATED ACTIONABLE RECOMMENDATIONS</title><description>A method implements hybrid artificial intelligence generated actionable recommendations. The method includes processing an event to identify an action of an event action set. The event includes an event value. The method further includes processing the event action set to generate an objective value, corresponding to the action, and a probability, corresponding to the action, and to form a model action set from the event action set. The method further includes filtering the model action set using action rule data and rule user data to generate a filtered action set. The method further includes processing, using the objective value and the probability, the filtered action set with an optimization controller to generate suggested action sets from which a selected action set is selected. The selected action set corresponds to a combined action value that satisfies the event value.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</subject><subject>PHYSICS</subject><subject>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZHD2iHQK8nRRcAwK8XTzdPZ09FHw9Atx9fHxdHf1c3ZVAJKuQY4hrkAVziGe_n6OTj6uCkGuzv6-vq5-Lo4goWAeBta0xJziVF4ozc2g4OYa4uyhm1qQH59aXJCYnJqXWhLvGmBiZGJmbGHgaGhMhBIA5zsrPg</recordid><startdate>20230920</startdate><enddate>20230920</enddate><creator>AGARWAL, Sudhir</creator><creator>SREEPATHY, Anu</creator><creator>FURBISH, Kevin Michael</creator><creator>MOUATADID, Lalla</creator><scope>EVB</scope></search><sort><creationdate>20230920</creationdate><title>HYBRID ARTIFICIAL INTELLIGENCE GENERATED ACTIONABLE RECOMMENDATIONS</title><author>AGARWAL, Sudhir ; SREEPATHY, Anu ; FURBISH, Kevin Michael ; MOUATADID, Lalla</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_EP4246380A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng ; fre ; ger</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</topic><topic>PHYSICS</topic><topic>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</topic><toplevel>online_resources</toplevel><creatorcontrib>AGARWAL, Sudhir</creatorcontrib><creatorcontrib>SREEPATHY, Anu</creatorcontrib><creatorcontrib>FURBISH, Kevin Michael</creatorcontrib><creatorcontrib>MOUATADID, Lalla</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>AGARWAL, Sudhir</au><au>SREEPATHY, Anu</au><au>FURBISH, Kevin Michael</au><au>MOUATADID, Lalla</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>HYBRID ARTIFICIAL INTELLIGENCE GENERATED ACTIONABLE RECOMMENDATIONS</title><date>2023-09-20</date><risdate>2023</risdate><abstract>A method implements hybrid artificial intelligence generated actionable recommendations. The method includes processing an event to identify an action of an event action set. The event includes an event value. The method further includes processing the event action set to generate an objective value, corresponding to the action, and a probability, corresponding to the action, and to form a model action set from the event action set. The method further includes filtering the model action set using action rule data and rule user data to generate a filtered action set. The method further includes processing, using the objective value and the probability, the filtered action set with an optimization controller to generate suggested action sets from which a selected action set is selected. The selected action set corresponds to a combined action value that satisfies the event value.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng ; fre ; ger
recordid cdi_epo_espacenet_EP4246380A1
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES
PHYSICS
SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR
title HYBRID ARTIFICIAL INTELLIGENCE GENERATED ACTIONABLE RECOMMENDATIONS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T17%3A23%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=AGARWAL,%20Sudhir&rft.date=2023-09-20&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EEP4246380A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true