DISTRIBUTED MULTI-COMPONENT SYNAPTIC COMPUTATIONAL STRUCTURE
The current invention discloses a spiking neural network (100) comprising a plurality of presynaptic integrators (209), a plurality of weight application elements (210), and a plurality of output neurons (220). Each of the plurality of presynaptic integrators (213) is adapted to receive a presynapti...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Patent |
Sprache: | eng ; fre ; ger |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | HETTEMA, Bart ZJAJO, Amir |
description | The current invention discloses a spiking neural network (100) comprising a plurality of presynaptic integrators (209), a plurality of weight application elements (210), and a plurality of output neurons (220). Each of the plurality of presynaptic integrators (213) is adapted to receive a presynaptic pulse signal (204) which incites accumulation of charge within the presynaptic integrator, and generate a synaptic input signal (214) based on the accumulated charge such that the synaptic input signal has a pre-determined temporal dynamic. A first group of weight application elements (211) of the plurality of weight application elements (210) is connected to receive the synaptic input signal (214) from a first one of the plurality of presynaptic integrators (213). Each weight application element (211) of the first group of weight application elements is adapted to apply a weight value to the synaptic input signal (214) to generate a synaptic output current (215), wherein the strength of the synaptic output current is a function of the applied weight value. Each of the plurality of output neurons (222) is connected to receive a synaptic output current (214) from a second group of weight application elements of the plurality of weight application elements, and generate a spatio-temporal spike train output signal (223) based on the received one or more synaptic output currents. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_EP4238006A2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EP4238006A2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_EP4238006A23</originalsourceid><addsrcrecordid>eNrjZLBx8QwOCfJ0Cg1xdVHwDfUJ8dR19vcN8Pdz9QtRCI70cwwI8XRWAAmFhjiGePr7OfooADWEOoeEBrnyMLCmJeYUp_JCaW4GBTfXEGcP3dSC_PjU4oLE5NS81JJ41wATI2MLAwMzRyNjIpQAABj7KgU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>DISTRIBUTED MULTI-COMPONENT SYNAPTIC COMPUTATIONAL STRUCTURE</title><source>esp@cenet</source><creator>HETTEMA, Bart ; ZJAJO, Amir</creator><creatorcontrib>HETTEMA, Bart ; ZJAJO, Amir</creatorcontrib><description>The current invention discloses a spiking neural network (100) comprising a plurality of presynaptic integrators (209), a plurality of weight application elements (210), and a plurality of output neurons (220). Each of the plurality of presynaptic integrators (213) is adapted to receive a presynaptic pulse signal (204) which incites accumulation of charge within the presynaptic integrator, and generate a synaptic input signal (214) based on the accumulated charge such that the synaptic input signal has a pre-determined temporal dynamic. A first group of weight application elements (211) of the plurality of weight application elements (210) is connected to receive the synaptic input signal (214) from a first one of the plurality of presynaptic integrators (213). Each weight application element (211) of the first group of weight application elements is adapted to apply a weight value to the synaptic input signal (214) to generate a synaptic output current (215), wherein the strength of the synaptic output current is a function of the applied weight value. Each of the plurality of output neurons (222) is connected to receive a synaptic output current (214) from a second group of weight application elements of the plurality of weight application elements, and generate a spatio-temporal spike train output signal (223) based on the received one or more synaptic output currents.</description><language>eng ; fre ; ger</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230906&DB=EPODOC&CC=EP&NR=4238006A2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230906&DB=EPODOC&CC=EP&NR=4238006A2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>HETTEMA, Bart</creatorcontrib><creatorcontrib>ZJAJO, Amir</creatorcontrib><title>DISTRIBUTED MULTI-COMPONENT SYNAPTIC COMPUTATIONAL STRUCTURE</title><description>The current invention discloses a spiking neural network (100) comprising a plurality of presynaptic integrators (209), a plurality of weight application elements (210), and a plurality of output neurons (220). Each of the plurality of presynaptic integrators (213) is adapted to receive a presynaptic pulse signal (204) which incites accumulation of charge within the presynaptic integrator, and generate a synaptic input signal (214) based on the accumulated charge such that the synaptic input signal has a pre-determined temporal dynamic. A first group of weight application elements (211) of the plurality of weight application elements (210) is connected to receive the synaptic input signal (214) from a first one of the plurality of presynaptic integrators (213). Each weight application element (211) of the first group of weight application elements is adapted to apply a weight value to the synaptic input signal (214) to generate a synaptic output current (215), wherein the strength of the synaptic output current is a function of the applied weight value. Each of the plurality of output neurons (222) is connected to receive a synaptic output current (214) from a second group of weight application elements of the plurality of weight application elements, and generate a spatio-temporal spike train output signal (223) based on the received one or more synaptic output currents.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZLBx8QwOCfJ0Cg1xdVHwDfUJ8dR19vcN8Pdz9QtRCI70cwwI8XRWAAmFhjiGePr7OfooADWEOoeEBrnyMLCmJeYUp_JCaW4GBTfXEGcP3dSC_PjU4oLE5NS81JJ41wATI2MLAwMzRyNjIpQAABj7KgU</recordid><startdate>20230906</startdate><enddate>20230906</enddate><creator>HETTEMA, Bart</creator><creator>ZJAJO, Amir</creator><scope>EVB</scope></search><sort><creationdate>20230906</creationdate><title>DISTRIBUTED MULTI-COMPONENT SYNAPTIC COMPUTATIONAL STRUCTURE</title><author>HETTEMA, Bart ; ZJAJO, Amir</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_EP4238006A23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng ; fre ; ger</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>HETTEMA, Bart</creatorcontrib><creatorcontrib>ZJAJO, Amir</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>HETTEMA, Bart</au><au>ZJAJO, Amir</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>DISTRIBUTED MULTI-COMPONENT SYNAPTIC COMPUTATIONAL STRUCTURE</title><date>2023-09-06</date><risdate>2023</risdate><abstract>The current invention discloses a spiking neural network (100) comprising a plurality of presynaptic integrators (209), a plurality of weight application elements (210), and a plurality of output neurons (220). Each of the plurality of presynaptic integrators (213) is adapted to receive a presynaptic pulse signal (204) which incites accumulation of charge within the presynaptic integrator, and generate a synaptic input signal (214) based on the accumulated charge such that the synaptic input signal has a pre-determined temporal dynamic. A first group of weight application elements (211) of the plurality of weight application elements (210) is connected to receive the synaptic input signal (214) from a first one of the plurality of presynaptic integrators (213). Each weight application element (211) of the first group of weight application elements is adapted to apply a weight value to the synaptic input signal (214) to generate a synaptic output current (215), wherein the strength of the synaptic output current is a function of the applied weight value. Each of the plurality of output neurons (222) is connected to receive a synaptic output current (214) from a second group of weight application elements of the plurality of weight application elements, and generate a spatio-temporal spike train output signal (223) based on the received one or more synaptic output currents.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng ; fre ; ger |
recordid | cdi_epo_espacenet_EP4238006A2 |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING PHYSICS |
title | DISTRIBUTED MULTI-COMPONENT SYNAPTIC COMPUTATIONAL STRUCTURE |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T14%3A30%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=HETTEMA,%20Bart&rft.date=2023-09-06&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EEP4238006A2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |