TRAINING MACHINE LEARNING MODELS ON MULTIPLE MACHINE LEARNING TASKS

A method of training a machine learning model having multiple parameters, in which the machine learning model has been trained on a first machine learning task to determine first values of the parameters of the machine learning model. The method includes determining, for each of the parameters, a re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: HADSELL, Raia Thais, DESJARDINS, Guillaume, RABINOWITZ, Neil Charles, VENESS, Joel William, PASCANU, Razvan, KIRKPATRICK, James
Format: Patent
Sprache:eng ; fre ; ger
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator HADSELL, Raia Thais
DESJARDINS, Guillaume
RABINOWITZ, Neil Charles
VENESS, Joel William
PASCANU, Razvan
KIRKPATRICK, James
description A method of training a machine learning model having multiple parameters, in which the machine learning model has been trained on a first machine learning task to determine first values of the parameters of the machine learning model. The method includes determining, for each of the parameters, a respective measure of an importance of the parameter to the machine learning model achieving acceptable performance on the first machine learning task; obtaining training data for training the machine learning model on a second, different machine learning task; and training the machine learning model on the second machine learning task by training the machine learning model on the training data to adjust the first values of the parameters so that the machine learning model achieves an acceptable level of performance on the second machine learning task while maintaining an acceptable level of performance on the first machine learning task.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_EP4231197A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EP4231197A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_EP4231197A13</originalsourceid><addsrcrecordid>eNrjZHAOCXL09PP0c1fwdXT28PRzVfBxdQyCCPi7uPoEK_j7KfiG-oR4Bvi4YqoJcQz2DuZhYE1LzClO5YXS3AwKbq4hzh66qQX58anFBYnJqXmpJfGuASZGxoaGluaOhsZEKAEAznMrAQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>TRAINING MACHINE LEARNING MODELS ON MULTIPLE MACHINE LEARNING TASKS</title><source>esp@cenet</source><creator>HADSELL, Raia Thais ; DESJARDINS, Guillaume ; RABINOWITZ, Neil Charles ; VENESS, Joel William ; PASCANU, Razvan ; KIRKPATRICK, James</creator><creatorcontrib>HADSELL, Raia Thais ; DESJARDINS, Guillaume ; RABINOWITZ, Neil Charles ; VENESS, Joel William ; PASCANU, Razvan ; KIRKPATRICK, James</creatorcontrib><description>A method of training a machine learning model having multiple parameters, in which the machine learning model has been trained on a first machine learning task to determine first values of the parameters of the machine learning model. The method includes determining, for each of the parameters, a respective measure of an importance of the parameter to the machine learning model achieving acceptable performance on the first machine learning task; obtaining training data for training the machine learning model on a second, different machine learning task; and training the machine learning model on the second machine learning task by training the machine learning model on the training data to adjust the first values of the parameters so that the machine learning model achieves an acceptable level of performance on the second machine learning task while maintaining an acceptable level of performance on the first machine learning task.</description><language>eng ; fre ; ger</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230823&amp;DB=EPODOC&amp;CC=EP&amp;NR=4231197A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230823&amp;DB=EPODOC&amp;CC=EP&amp;NR=4231197A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>HADSELL, Raia Thais</creatorcontrib><creatorcontrib>DESJARDINS, Guillaume</creatorcontrib><creatorcontrib>RABINOWITZ, Neil Charles</creatorcontrib><creatorcontrib>VENESS, Joel William</creatorcontrib><creatorcontrib>PASCANU, Razvan</creatorcontrib><creatorcontrib>KIRKPATRICK, James</creatorcontrib><title>TRAINING MACHINE LEARNING MODELS ON MULTIPLE MACHINE LEARNING TASKS</title><description>A method of training a machine learning model having multiple parameters, in which the machine learning model has been trained on a first machine learning task to determine first values of the parameters of the machine learning model. The method includes determining, for each of the parameters, a respective measure of an importance of the parameter to the machine learning model achieving acceptable performance on the first machine learning task; obtaining training data for training the machine learning model on a second, different machine learning task; and training the machine learning model on the second machine learning task by training the machine learning model on the training data to adjust the first values of the parameters so that the machine learning model achieves an acceptable level of performance on the second machine learning task while maintaining an acceptable level of performance on the first machine learning task.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZHAOCXL09PP0c1fwdXT28PRzVfBxdQyCCPi7uPoEK_j7KfiG-oR4Bvi4YqoJcQz2DuZhYE1LzClO5YXS3AwKbq4hzh66qQX58anFBYnJqXmpJfGuASZGxoaGluaOhsZEKAEAznMrAQ</recordid><startdate>20230823</startdate><enddate>20230823</enddate><creator>HADSELL, Raia Thais</creator><creator>DESJARDINS, Guillaume</creator><creator>RABINOWITZ, Neil Charles</creator><creator>VENESS, Joel William</creator><creator>PASCANU, Razvan</creator><creator>KIRKPATRICK, James</creator><scope>EVB</scope></search><sort><creationdate>20230823</creationdate><title>TRAINING MACHINE LEARNING MODELS ON MULTIPLE MACHINE LEARNING TASKS</title><author>HADSELL, Raia Thais ; DESJARDINS, Guillaume ; RABINOWITZ, Neil Charles ; VENESS, Joel William ; PASCANU, Razvan ; KIRKPATRICK, James</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_EP4231197A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng ; fre ; ger</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>HADSELL, Raia Thais</creatorcontrib><creatorcontrib>DESJARDINS, Guillaume</creatorcontrib><creatorcontrib>RABINOWITZ, Neil Charles</creatorcontrib><creatorcontrib>VENESS, Joel William</creatorcontrib><creatorcontrib>PASCANU, Razvan</creatorcontrib><creatorcontrib>KIRKPATRICK, James</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>HADSELL, Raia Thais</au><au>DESJARDINS, Guillaume</au><au>RABINOWITZ, Neil Charles</au><au>VENESS, Joel William</au><au>PASCANU, Razvan</au><au>KIRKPATRICK, James</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>TRAINING MACHINE LEARNING MODELS ON MULTIPLE MACHINE LEARNING TASKS</title><date>2023-08-23</date><risdate>2023</risdate><abstract>A method of training a machine learning model having multiple parameters, in which the machine learning model has been trained on a first machine learning task to determine first values of the parameters of the machine learning model. The method includes determining, for each of the parameters, a respective measure of an importance of the parameter to the machine learning model achieving acceptable performance on the first machine learning task; obtaining training data for training the machine learning model on a second, different machine learning task; and training the machine learning model on the second machine learning task by training the machine learning model on the training data to adjust the first values of the parameters so that the machine learning model achieves an acceptable level of performance on the second machine learning task while maintaining an acceptable level of performance on the first machine learning task.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng ; fre ; ger
recordid cdi_epo_espacenet_EP4231197A1
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
PHYSICS
title TRAINING MACHINE LEARNING MODELS ON MULTIPLE MACHINE LEARNING TASKS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T16%3A52%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=HADSELL,%20Raia%20Thais&rft.date=2023-08-23&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EEP4231197A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true